a) A
LC circuit has an inductance of
L0 and a capacitance of
C0.
Another
LC circuit has inductance
L =
nL0 and capacitance
L =
nL0. What is the ratio of the frequencies of oscillations between the latter
and the frequency of oscillations of the first circuit?
b) An
LC circuit oscillates with frequency
f0, for an inductance
L0 and a capacitance
C0. Keeping the same value of
C0,
replace the coil with another one with inductance
L =
nL0. Determine the new
resonant frequency.
Solution
a) Data of the problem:
|
Circuit 1 |
Circuit 2 |
Inductance |
L0 |
nL0 |
Capacitance |
C0 |
nC0 |
Table 1
The natural frequency of oscillations in a circuit is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\omega_{0}=\frac{1}{\sqrt{LC\;}}} \tag{I}
\end{gather}
\]
writing the expression (I) for the two circuits
\[
\begin{gather}
\omega_{01}=\frac{1}{\sqrt{L_{0}C_{0}\;}} \tag{II}
\end{gather}
\]
\[
\begin{gather}
\omega_{02}=\frac{1}{\sqrt{nL_{0}nC_{0}\;}}\\[5pt]
\omega_{02}=\frac{1}{\sqrt{n^{2}L_{0}C_{0}\;}}\\[5pt]
\omega_{02}=\frac{1}{n\sqrt{L_{0}C_{0}\;}} \tag{III}
\end{gather}
\]
In an
LC circuit, the resonant angular frequency is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\omega =2\pi f} \tag{IV}
\end{gather}
\]
writing the expression (IV) for the two circuits
\[
\begin{gather}
\omega_{1}=2\pi f_{0} \tag{V}
\end{gather}
\]
\[
\begin{gather}
\omega_{2}=2\pi f \tag{VI}
\end{gather}
\]
dividing expression (VI) by expression (V)
\[
\begin{gather}
\frac{\omega_{2}}{\omega_{1}}=\frac{\cancel{2\pi} f}{\cancel{2\pi} f_{0}}\\[5pt]
\frac{\omega_{2}}{\omega_{1}}=\frac{f}{f_{0}} \tag{VII}
\end{gather}
\]
substituting expressions (II) and (III) into expression (VII)
\[
\begin{gather}
\frac{\frac{1}{n\sqrt{L_{0}C_{0}\;}}}{\frac{1}{\sqrt{L_{0}C_{0}\;}}}=\frac{f}{f_{0}}\\[5pt]
\frac{1}{n\cancel{\sqrt{L_{0}C_{0}\;}}}\frac{\cancel{\sqrt{L_{0}C_{0}\;}}}{1}=\frac{f}{f_{0}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\frac{f}{f_{0}}=\frac{1}{n}}
\end{gather}
\]
b) Data of the problem:
|
Circuit 1 |
Circuit 2 |
Inductance |
L0 |
nL0 |
Capacitance |
C0 |
C0 |
Frequency |
f0 |
x = f |
Table 1
Writing the (I) expression for the two circuits
\[
\begin{gather}
\omega_{01}=\frac{1}{\sqrt{L_{0}C_{0}\;}} \tag{VIII}
\end{gather}
\]
\[
\begin{gather}
\omega_{02}=\frac{1}{\sqrt{nL_{0}C_{0}\;}} \tag{IX}
\end{gather}
\]
writing the expression (IV) for the two circuits
\[
\begin{gather}
\omega_{1}=2\pi f_{0} \tag{X}
\end{gather}
\]
\[
\begin{gather}
\omega_{2}=2\pi f \tag{XI}
\end{gather}
\]
dividing expression (XI) by expression (X)
\[
\begin{gather}
\frac{\omega_{2}}{\omega_{1}}=\frac{\cancel{2\pi} f}{\cancel{2\pi} f_{0}}\\[5pt]
\frac{\omega_{2}}{\omega_{1}}=\frac{f}{f_{0}} \tag{XII}
\end{gather}
\]
substituting expressions (VIII) and (IX) into expression (XII)
\[
\begin{gather}
\frac{\frac{1}{\sqrt{nL_{0}C_{0}\;}}}{\frac{1}{\sqrt{L_{0}C_{0}\;}}}=\frac{f}{f_{0}}\\[5pt]
\frac{1}{\sqrt{n\;}\cancel{\sqrt{L_{0}C_{0}\;}}}\frac{\cancel{\sqrt{L_{0}C_{0}\;}}}{1}=\frac{f}{f_{0}}\\[5pt]
\frac{1}{\sqrt{n\;}}=\frac{f}{f_{0}}\\[5pt]
f=f_{0}\frac{1}{\sqrt{n\;}}\\[5pt]
f=f_{0}\frac{1}{\sqrt{n\;}}\frac{\sqrt{n\;}}{\sqrt{n\;}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{f=f_{0}\frac{\sqrt{n\;}}{n}}
\end{gather}
\]