Two equal charges of the same sign are separated by a distance of 2
d. Calculate the electric field
vector at the points along the perpendicular bisector of the line joining the two charges. Check the
solution for points far from the charges.
Problem diagram:
The vector
r locates the point
P, where we want to calculate the electric field relative
to the origin, and is written as
\( \mathbf r=x\;\mathbf i \).
The vector
r1 goes from the origin to the charge +
q (on the left in Figure 1),
it is given by
\( \mathbf r_1=-d\;\mathbf i \).
The vector
r−
r1 goes from the charge to point
P, it is given by
\( \mathbf r-\mathbf r_1=x\;\mathbf i-\left(-d\;\mathbf i\right)=\left(x+d\right)\;\mathbf i \).
The vector
r is the same as in the previous situation. The vector
r2 goes from
the origin to the second charge +
q, and is given by
\( \mathbf r_2=d\mathbf i \).
The vector
r−
r2 goes from the charge to the point
P, and is given
by
\( \mathbf r-\mathbf r_2=\left(x-d\right)\;\mathbf i \),
(Figure 2).
Solution
The electric field vector of a discrete system of charges is calculated by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\mathbf E=\frac{1}{4\pi \epsilon_0}\;\sum_{i=1}^{n}\;\frac{q_i}{\left|\mathbf r-\mathbf r_i\right|^2}\;\frac{\mathbf r-\mathbf r_i}{\left|\mathbf r-\mathbf r_i\right|}}
\end{gather}
\]
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi \epsilon_ 0}\left\{\frac{q_1}{\left|\mathbf r-\mathbf r_1\right|^2}\;\frac{\mathbf r-\mathbf r_1}{\left|\mathbf r-\mathbf r_1\right|}+\frac{q_2}{\left|\mathbf r-\mathbf r_2\right|^2}\;\frac{\mathbf r-\mathbf r_2}{\left|\mathbf r-\mathbf r_2\right|}\right\}
\end{gather}
\]
The denominators of the above equation are written as
\( \left|\mathbf r-\mathbf r_1\right|=\sqrt{\left(x+d\right)^2\;}=x+d \),
\( \left|\mathbf r-\mathbf r_1\right|^2=\left(x+d\right)^2 \),
\( \left|\mathbf r-\mathbf r_2\right|=\sqrt{\left(x-d\right)^2\;}=x-d \).
and
\( \left|\mathbf r-\mathbf r_2\right|^2=\left(x-d\right)^2 \)
\[
\begin{gather}
\mathbf E=\frac{1}{4\pi \epsilon_0}\left\{\frac{q}{\left(x+d\right)^2}\;\frac{\cancel{\left(x+d\right)}\;\mathbf i}{\cancel{\left(x+d\right)}}+\frac{q}{\left(x-d\right)^2}\;\frac{\cancel{\left(x-d\right)}\;\mathbf i}{\cancel{\left(x-d\right)}}\right\}\\[5pt]
\mathbf E=\frac{q}{4\pi\epsilon_0}\left\{\frac{1}{\left(x+d\right)^2}+\frac{1}{\left(x-d\right)^2}\right\}\;\mathbf i\\[5pt]
\mathbf E=\frac{q}{4\pi\epsilon_0}\left\{\frac{\left(x-d\right)^2+\left(x+d\right)^2}{\left(x+d\right)^2\left(x-d\right)^2}\right\}\;\mathbf i\\[5pt]
\mathbf E=\frac{q}{4\pi\epsilon_0}\left\{\frac{x^2-2xd+d^2+x^2+2xd+d^2}{\left(x+d\right)^2\left(x-d\right)^2}\right\}\;\mathbf i\\[5pt]
\mathbf E=\frac{1}{4\pi\epsilon_0}\frac{2q\left(x^2+d^2\right)}{\left(x+d\right)^2\left(x-d\right)^2}\;\mathbf i
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\mathbf E=\frac{1}{2\pi \epsilon_0}\frac{q\left(x^2+d^2\right)}{\left(x+d\right)^2\left(x-d\right)^2}\;\mathbf i}
\end{gather}
\]
Note 1: In a one-dimensional problem, the vector solution is the same as the scalar solution.
For points far from the center we have,
y≫
d, we can neglect the terms in
d in the
denominator and the term in
d2 in the numerator, and the solution will be
\[
\begin{gather}
\mathbf E=\frac{1}{2\pi \epsilon_0}\frac{q\cancel{x^2}}{x^\cancelto{2}{4}}\;\mathbf i
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\mathbf E=\frac{1}{2\pi \epsilon_0}\frac{q}{x^2}\;\mathbf i}
\end{gather}
\]