Consider two sources, F1 and F2, in phase as shown in the figure,
vibrating at a frequency of 300 Hz. The speed of waves, in the medium where points A and B
are located, is 6 m/s. What type of interference occurs at points A and B?
Problem data:
- Source frequency: F1 = F2 = 300 Hz;
- Speed of waves in the midium v = 6 m/s.
Solution
First, let us convert the speed given in meters per second (m/s) to centimeters per second (cm/s)
(cm/s)
\[
\begin{gather}
v=6\;\frac{\cancel{\text{m}}}{\text{s}}\times\;\frac{100\;\text{cm}}{1\;\cancel{\text{m}}}\times\frac{1}{\text{s}}=600\;\frac{\text{cm}}{\text{s}}
\end{gather}
\]
The wavelength is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{v=\lambda f}
\end{gather}
\]
\[
\begin{gather}
\lambda =\frac{v}{f}\\[5pt]
\lambda =\frac{600}{300}\\[5pt]
\lambda=2\;\text{cm}
\end{gather}
\]
The distance,
S1, from source
F1 to point
A will be given by the
segment
\[
\begin{gather}
S_{1}=\overline{{F_{1}A}}=8\;\text{cm}
\end{gather}
\]
and the distance,
S2, from source
Fo
to
A will be
\[
\begin{gather}
S_{2}=\overline{{F_{2}A}}=11\;\text{cm}
\end{gather}
\]
The difference in paths taken by the waves of
F1 and
F2
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\Delta S=\left|S_{2}-S_{1}\right|} \tag{I}
\end{gather}
\]
\[
\begin{gather}
\Delta S=\left|11-8\right|\\[5pt]
\Delta S=3\;\text{cm}
\end{gather}
\]
The number
\( \frac{\Delta S}{\lambda }=\frac{3}{2}=1,5=1+\frac{1}{2} \)
is of form
\( \left(n+\frac{1}{2}\right) \),
at
point A the interference will be destructive.
The distance,
S1, from source
F1 to point
B will be given by the
segment
\[
\begin{gather}
S_{1}=\overline{{F_{1}B}}=6\;\text{cm}
\end{gather}
\]
and the distance,
S2, from source
F2 to
B will be
\[
\begin{gather}
S_{2}=\overline{{F_{2}A}}=8\;\text{cm}
\end{gather}
\]
substituting
S1 and
S2 in expression (I) for path difference
\[
\begin{gather}
\Delta S=\left|8-6\right|\\[5pt]
\Delta S=2\;\text{cm}
\end{gather}
\]
The number
\( \frac{\Delta S}{\lambda }=\frac{2}{2}=1 \),
is an integer
n at
point B the interference will be constructive.
Note: At point B, the crests of the two waves meet, producing constructive
interference. At point A, the crest of the wave produced in F2 meets the
trough of the wave produced in F1, producing destructive interference (Figure 1).