A train leaves station
A, where it is at rest, with a constant acceleration equal to
a, at one
point, the train driver starts to brake the train with a deceleration equal to
b, the train stops at
station
B. The distance between the stations is equal to
L. Determine the total time it takes
to travel from one station to another.
Problem data:
- Acceleration of the train: αA = a;
- Deceleration of the train: αB = b;
- Distance between stations: L.
Problem diagram:
We choose a frame of reference with origin at station
A, position
D is where the conductor
begins to brake the train, and
L is the position where station
B is located (Figure 1). The
quantities with index
A refer to the first part of the route and with index
B to the second
part.
Solution
The train has an acceleration,
a > 0 in the first part of the motion and
a < 0 in the
second part. In each part of the motion, the acceleration is constant, the equation for displacement is
given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{S=S_{0}+v_{0}t+\frac{\alpha }{2}t^{2}} \tag{I}
\end{gather}
\]
for the speed
\[
\begin{gather}
\bbox[#99CCFF,10px]
{v=v_{0}+\alpha t} \tag{II}
\end{gather}
\]
We have
S0A = 0, which is the position where the train starts the motion and begins
to accelerate. In
SA =
D is the final position where the train stops to accelerate
and starts to slow down. The train starts from the rest, v
0A = 0, with acceleration
α
A =
a and
tA the interval of time at which the train remains in
accelerated motion, substituting this data in the expression (I)
\[
\begin{gather}
S_{A}=S_{0 A}+v_{0 A}t_{A}+\frac{\alpha_{A}}{2}t_{A}^{2}\\[5pt]
D=0+0t_{A}+\frac{a}{2}t_{A}^{2}\\[5pt]
D=\frac{a}{2}t_{A}^{2} \tag{III}
\end{gather}
\]
For the speed, we have that
vA is the final speed of the train after accelerating for a
time
tA
\[
\begin{gather}
v_{A}=v_{0 A}+\alpha_{A}t_{A}\\[5pt]
v_{A}=0+at_{A}\\[5pt]
v_{A}=at_{A} \tag{IV}
\end{gather}
\]
For the second part of the trip, we have
S0B =
D is the position where the
train begins to slow,
SB =
L is the final position where the train arrives. The
initial speed
v0B =
vA in which the train is when it starts to
brake, equals the final speed of the first part of the motion. The train deceleration is
α
B =
b and
tB the time interval that the train slows down
to stop, substituting these values in the expression (I)
\[
\begin{gather}
S_{B}=S_{0 B}+v_{0 B}t_{B}+\frac{\alpha_{B}}{2}t_{B}^{2}\\[5pt]
L=D+at_{A}t_{B}-\frac{b}{2}t_{B}^{2} \tag{V}
\end{gather}
\]
For speed, we have that the train stops when arrives at station
B, the final speed will be
vB = 0, the initial speed
v0B =
vA will be
given by the expression (IV) above, and
tB is the interval of time that the train slowed
until stops.
\[
\begin{gather}
v_{B}=v_{0 B}+\alpha_{B}t_{B}\\[5pt]
0=at_{A}-bt_{B}\\[5pt]
at_{A}=bt_{B} \tag{VI}
\end{gather}
\]
Solving expression (VI) for
tB, we have the interval of time when the train slow
\[
\begin{gather}
t_{B}=\frac{a}{b}t_{A} \tag{VII}
\end{gather}
\]
substituting expressions (III) and (VII) into the expression (V)
\[
\begin{gather}
L=\frac{a}{2}t_{A}^{2}+at_{A}\frac{a}{b}t_{A}-\frac{b}{2}\left(\frac{a}{b}t_{A}\right)^{2}\\[5pt]
L=\frac{a}{2}t_{A}^{2}+\frac{a^{2}}{b}t_{A}^{2}-\frac{b}{2}\frac{a^{2}}{b^{2}}t_{A}^{2}\\[5pt]
L=\frac{a}{2}t_{A}^{2}+\frac{a^{2}}{b}t_{A}^{2}-\frac{a^{2}}{2b}t_{A}^{2}\\[5pt]
L=\frac{a}{2}t_{A}^{2}+\frac{a^{2}}{2b}t_{A}^{2}\\[5pt]
L=t_{A}^{2}\left(\frac{a}{2}+\frac{a^{2}}{2b}\right)\\[5pt]
L=t_{A}^{2}\left(\frac{ab+a^{2}}{2b}\right)
\end{gather}
\]
solving the equation for
tA, we have the interval of time when the train runs the first
part of the trip
\[
\begin{gather}
t_{A}^{2}=\frac{2Lb}{a(a+b)}\\[5pt]
t_{A}=\sqrt{\frac{2Lb}{a(a+b)}}=\left[\frac{2Lb}{a(a+b)}\right]^{\frac{1}{2}} \tag{VIII}
\end{gather}
\]
Likewise, we can solve the expression (VII) for
tA
\[
\begin{gather}
t_{A}=\frac{b}{a}t_{B} \tag{IX}
\end{gather}
\]
substituting this value and the expression (III) into the expression (V)
\[
\begin{gather}
L=\frac{a}{2}t_{A}^{2}+at_{A}t_{B}-\frac{b}{2}t_{B}^{2}
\end{gather}
\]
using the expression (IX) for the value of
tA
\[
\begin{gather}
L=\frac{a}{2}\left(\frac{b}{a}t_{B}\right)^{2}+a\frac{b}{a}t_{B}t_{B}-\frac{b}{2}t_{B}^{2}\\[5pt]
L=\frac{a}{2}\frac{b^{2}}{a^{2}}t_{B}^{2}+a\frac{b}{a}t_{B}^{2}-\frac{b}{2}t_{B}^{2}\\[5pt]
L=\frac{b^{2}}{2a}t_{B}^{2}+bt_{B}^{2}-\frac{b}{2}t_{B}^{2}\\[5pt]
L=\frac{b^{2}}{2a}t_{B}^{2}+\frac{b}{2}t_{B}^{2}\\[5pt]
L=t_{B}^{2}\left(\frac{b^{2}}{2a}+\frac{b}{2}\right)\\[5pt]
L=t_{B}^{2}\left(\frac{b^{2}+ab}{2a}\right)
\end{gather}
\]
the interval of time until the train stops at station
B will be
\[
\begin{gather}
t_{B}^{2}=\frac{2La}{b(b+a)}\\[5pt]
t_{B}=\sqrt{\frac{2La}{b(b+a)}}=\left[\frac{2La}{b(b+a)}\right]^{\frac{1}{2}} \tag{X}
\end{gather}
\]
The total time of the trip
t will be given by the sum of the expressions (VIII) and (X)
\[
\begin{gather}
t=t_{A}+t_{B}\\[5pt]
t=\left[\frac{2Lb}{a(a+b)}\right]^{\frac{1}{2}}+\left[\frac{2La}{b(a+b)}\right]^{\frac{1}{2}}
\end{gather}
\]
factoring
\( \left[\dfrac{2L}{a+b}\right]^{\frac{1}{2}} \)
\[
\begin{gather}
t=\left[\frac{2L}{a+b}\right]^{\frac{1}{2}}\left[\left(\frac{b}{a}\right)^{\frac{1}{2}}+\left(\frac{a}{b}\right)^{\frac{1}{2}}\right]\\[5pt]
t=\left[\frac{2L}{a+b}\right]^{\frac{1}{2}}\;\left[\frac{b^{\frac{1}{2}}}{a^{\frac{1}{2}}}+\frac{a^{\frac{1}{2}}}{b^{\frac{1}{2}}}\right]\\[5pt]
t=\left[\frac{2L}{a+b}\right]^{\frac{1}{2}}\left[\frac{b^{\frac{1}{2}}b^{\frac{1}{2}}+a^{\frac{1}{2}}a^{\frac{1}{2}}}{a^{\frac{1}{2}}b^{\frac{1}{2}}}\right]\\[5pt]
t=\left[\frac{2L}{a+b}\right]^{\frac{1}{2}}\left[\frac{b+a}{a^{\frac{1}{2}}b^{\frac{1}{2}}}\right]
\end{gather}
\]
squaring the second term in the brackets
\[
\begin{gather}
t=\left[\frac{2L}{\cancel{(a+b)}}\frac{(b+a)^{\cancel{2}}}{ab}\right]^{\frac{1}{2}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{t=\left[\frac{2L(b+a)}{ab}\right]^{\frac{1}{2}}}
\end{gather}
\]