A car starts a motion from the rest in a straight line. The car runs 100 m and 120 m in two successive
seconds. Determine the acceleration of motion.
Problem data:
- Initial speed of the car: v0 = 0;
- Distance traveled between t and (t+1) seconds: S2 − S1 = 100 m;
- Distance traveled between (t+1) and (t+2) seconds: S3 − S2 = 120 m.
Problem diagram:
We choose a reference frame pointing to the right. The car starts from the origin,
S0 = 0.
After
t seconds the start, the car runs a distance from
S meters. Then in the time interval of
1 second, between
t and (
t+1) seconds, it travels 100 meters reaching the position
(
S+100) meters.
In the next time interval of 1 second, between
t+1 and
t+2 seconds, it travels the space of
120 meters, reaching the position
S+220 meters.
Solution
The equation of displacement as a function of time with constant acceleration is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{S=S_{0}+v_{0}t+\frac{a}{2}t^{2}} \tag{I}
\end{gather}
\]
Writing this equation for the movement of the car between origin
S0 = 0 and the point
S
\[
\begin{gather}
S=0+0.t+\frac{a}{2}t^{2}\\
S=\frac{a}{2}t^{2} \tag{II}
\end{gather}
\]
Writing the expression (I) for the movement of the car between the origin
S0 = 0 and the
point
S+100
\[
\begin{gather}
S+100=0+0.t+\frac{a}{2}(t+1)^{2}\\
S+100=\frac{a}{2}(t+1)^{2} \tag{III}
\end{gather}
\]
Writing the expression (I) for the movement of the car between the origin
S0 = 0 and the
point
S+220
\[
\begin{gather}
S+220=0+0.t+\frac{a}{2}(t+2)^{2}\\
S+220=\frac{a}{2}(t+2)^{2} \tag{IV}
\end{gather}
\]
Equation (II), (III), and (IV) can be written as a system of three equations to three unknowns
S,
a and
t
\[
\begin{gather}
\left\{
\begin{array}{l}
S=\dfrac{a}{2}t^{2}\\
S+100=\dfrac{a}{2}(t+1)^{2}\\
S+220=\dfrac{a}{2}(t+2)^{2}
\end{array}
\right. \tag{V}
\end{gather}
\]
subtracting the first equation of the second in the system (V)
\[
\begin{gather}
\quad \cancel{S}+100=\frac{a}{2}(t+1)^{2}\\
\frac{\text{(-)} \qquad\quad \cancel{S}=\dfrac{a}{2}t^{2} \qquad\quad}{100=\dfrac{a}{2}(t+1)^{2}-\dfrac{a}{2}t^{2}}
\end{gather}
\]
factoring the term
\( \frac{a}{2} \)
on the right-hand side of the equation
\[
100=\frac{a}{2}\left[(t+1)^{2}-t^{2}\right]
\]
From
Special Binomial Products
\[
(a+b)^{2}=a^{2}+2ab+b^{2}
\]
expanding the first term in brackets
\[
\begin{gather}
100=\frac{a}{2}\left[t^{2}+2t+1-t^{2}\right]\\
100=\frac{a}{2}\left(2t+1\right) \tag{VI}
\end{gather}
\]
Subtracting the second equation of the third in the system (V)
\[
\begin{gather}
\qquad\; \cancel{S}+220=\frac{a}{2}(t+2)^{2} \qquad \\
\frac{\text{(-)} \quad \cancel{S}+100=\dfrac{a}{2}(t+1)^{2} \qquad}{120=\dfrac{a}{2}(t+2)^{2}-\dfrac{a}{2}(t+1)^{2}}
\end{gather}
\]
factoring the term
\( \frac{a}{2} \)
on the right-hand side of the equation
\[
120=\frac{a}{2}\left[(t+2)^{2}-(t+1)^{2}\right]
\]
the two terms between brackets are
Special Binomial Products as the same used above
\[
\begin{gather}
120=\frac{a}{2}\left[t^{2}+2.2t+2^{2}-\left(t^{2}+2t+1\right)\right]\\
120=\frac{a}{2}\left[t^{2}+4t+4-t^{2}-2t-1\right]\\
120=\frac{a}{2}\left(2t+3\right) \tag{VII}
\end{gather}
\]
Expressions (VI) and (VII) can be written as a system of two equations to two unknowns,
a e
t
\[
\left\{
\begin{matrix}
100=\dfrac{a}{2}\left(2t+1\right)\\
120=\dfrac{a}{2}\left(2t+3\right)
\end{matrix} \tag{VIII}
\right.
\]
subtracting the first equation of the second in the system (VIII)
\[
\frac{\left.
\begin{matrix}
\quad\quad 120=\dfrac{a}{2}\left(2t+3\right)\\
(-) \quad 100=\dfrac{a}{2}\left(2t+1\right)
\end{matrix} \quad
\right.}{20=\dfrac{a}{2}(2t+3)-\dfrac{a}{2}(2t+1)}
\]
factoring the term
\( \frac{a}{2} \)
on the right-hand side of the equation
\[
\begin{gather}
20=\frac{a}{2}\left[(2t+3)-(2t+1)\right]\\
20=\frac{a}{2}\left[2t+3-2t-1\right]\\
20=\frac{a}{\cancel{2}}.\cancel{2}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{a=20\;\text{m/s}^{2}}
\]