Solved Problem on Collisions
advertisement   



Two elastic balls, with masses m1 and m2 and speeds v1 and v2 respectively, collide head-on, their speeds are in the direction of the line joining their centers. Determine the speeds of the balls after the collision in the following cases:
a) The speed of the second ball before the impact is equal to zero;
b) The masses of the balls are equal.


Problem data:
  • Mass of ball 1:    m1;
  • Mass of ball 2:    m2;
  • Initial speed of ball 1:    v1;
  • Initial speed of ball 2:    v2.
Problem diagram:

We choose a reference frame pointing to the right, with the speed of ball 1 in the same direction as the reference frama, v1 > 0, and the speed of ball2 in the opposite direction, v2 < 0 (Figure 1).

Figura 1

Solution

As the collision is elastic, the momentum and kinetic energy of the system are conserved. We write the equations for balls 1 and 2 in the initial and final situations.
The momentum is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\vec Q=m\vec v} \end{gather} \]
The kinetic energy is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {K=\frac{mv^{2}}{2}} \end{gather} \]
  • Before the collision
\[ \begin{gather} Q_{1i}=m_{1}v_{1} \tag{I} \end{gather} \]
\[ \begin{gather} Q_{2i}=m_{2}v_{2} \tag{II} \end{gather} \]
\[ \begin{gather} K_{1i}=\frac{m_{1}v_{1}^{2}}{2} \tag{III} \end{gather} \]
\[ \begin{gather} K_{2i}=\frac{m_{2}v_{2}^{2}}{2} \tag{IV} \end{gather} \]
  • After the collision
\[ \begin{gather} Q_{1f}=m_{1}v_{1f} \tag{V} \end{gather} \]
\[ \begin{gather} Q_{2f}=m_{2}v_{2f} \tag{VI} \end{gather} \]
\[ \begin{gather} K_{1f}=\frac{m_{1}v_{1f}^{2}}{2} \tag{VII} \end{gather} \]
\[ \begin{gather} K_{2f}=\frac{m_{2}v_{2f}^{2}}{2} \tag{VIII} \end{gather} \]
Applying the Law of Conservation of linear Momentum, applying equations (I), (II), (V) and (VI)
\[ \begin{gather} Q_{i}=Q_{f}\\[5pt] m_{1}v_{1}-m_{2}v_{2}=m_{1}v_{1f}+m_{2}v_{2f} \tag{IX} \end{gather} \]
Applying the Law of Conservation of Energy, applying equations (III), (IV), (VII) and (VIII)
\[ \begin{gather} K_{i}=K_{f}\\[5pt] \frac{m_{1}v_{1}^{2}}{\cancel{2}}+\frac{m_{2}v_{2}^{2}}{\cancel{2}}=\frac{m_{1}v_{1f}^{2}}{\cancel{2}}+\frac{m_{2}v_{2f}^{2}}{\cancel{2}}\\[5pt] m_{1}v_{1}^{2}+m_{2}v_{2}^{2}=m_{1}v_{1f}^{2}+m_{2}v_{2f}^{2} \tag{X} \end{gather} \]
Equations (IX) and (X) can be written as a system of two equations with two unknowns (v1f and v2f)
\[ \begin{gather} \left\{ \begin{matrix} \;m_{1}v_{1}-m_{2}v_{2}=m_{1}v_{1f}+m_{2}v_{2f}\\ \;m_{1}v_{1}^{2}+m_{2}v_{2}^{2}=m_{1}v_{1f}^{2}+m_{2}v_{2f}^{2} \end{matrix} \tag{XI} \right. \end{gather} \]
a) Letting v2 = 0 in system (XI)
\[ \begin{gather} \left\{ \begin{matrix} \;m_{1}v_{1}-m_{2}.0=m_{1}v_{1f}+m_{2}v_{2f}\\ \;m_{1}v_{1}^{2}+m_{2}.0^{2}=m_{1}v_{1f}^{2}+m_{2}v_{2f}^{2} \end{matrix} \right. \\[5pt] \left\{ \begin{matrix} \;m_{1}v_{1}=m_{1}v_{1f}+m_{2}v_{2f}\\ \;m_{1}v_{1}^{2}=m_{1}v_{1f}^{2}+m_{2}v_{2f}^{2} \end{matrix} \right. \end{gather} \]
solving the first equation for v2f
\[ \begin{gather} m_{2}v_{2f}=m_{1}v_{1}-m_{1}v_{1f}\\[5pt] v_{2f}=\frac{1}{m_{2}}(m_{1}v_{1}-m_{1}v_{1f}) \tag{XII} \end{gather} \]
and substituting in the second equation
\[ \begin{gather} m_{1}v_{1}^{2}=m_{1}v_{1f}^{2}+m_{2}\left[\frac{1}{m_{2}}(m_{1}v_{1}-m_{1}v_{1f})\right]^{2}\\[5pt] m_{1}v_{1}^{2}=m_{1}v_{1f}^{2}+\cancel{m_{2}}\frac{1}{m_{2}^{\cancel{2}}}(m_{1}v_{1}-m_{1}v_{1f})^{2} \end{gather} \]
the term in parentheses on the right-hand side of the equality is a special binomial of the type \( (a-b)^{2}=a^{2}-2ab+b^{2} \)
\[ \begin{gather} m_{1}v_{1}^{2}=m_{1}v_{1f}^{2}+\frac{1}{m_{2}}\left(m_{1}^{2}v_{1}^{2}-2m_{1}^{2}v_{1}v_{1f}+m_{1}^{2}v_{1f}^{2}\right) \tag{XIII} \end{gather} \]
multiplying equation (XIII) by m2
\[ \begin{gather} \qquad \qquad \qquad m_{1}v_{1}^{2}=m_{1}v_{1f}^{2}+\frac{1}{m_{2}}\left(m_{1}^{2}v_{1}^{2}-2m_{1}^{2}v_{1}v_{1f}+m_{1}^{2}v_{1f}^{2}\right)\qquad (\;\times m_{2}\;)\\[5pt] \; m_{1}m_{2}v_{1}^{2}=m_{1}m_{2}v_{1f}^{2}+m_{1}^{2}v_{1}^{2}-2m_{1}^{2}v_{1}v_{1f}+m_{1}^{2}v_{1f}^{2}\\[5pt] \; \cancel{m_{1}}m_{2}v_{1}^{2}=\cancel{m_{1}}\left( m_{2}v_{1f}^{2}+m_{1}v_{1}^{2}-2m_{1}v_{1}v_{1f}+m_{1}v_{1f}^{2}\right)\\[5pt] m_{2}v_{1}^{2}=m_{2}v_{1f}^{2}+m_{1}v_{1}^{2}-2m_{1}v_{1}v_{1f}+m_{1}v_{1f}^{2}\\[5pt] \left(m_{2}+m_{1}\right)v_{1f}^{2}-2m_{1}v_{1}v_{1f}+m_{1}v_{1}^{2}-m_{2}v_{1}^{2}=0 \end{gather} \]
This is a Quadratic Equation of type   \( ax^{2}+bx+c=0 \)   where the unknown is the value v1f.

Solution ofde   \( \underbrace{\left(m_{2}+m_{1}\right)}_{a}\underbrace{v_{1f}^{2}}_{x^{2}}-\underbrace{2m_{1}v_{1}}_{b}\underbrace{v_{1f}}_{x}+\underbrace{m_{1}v_{1}^{2}-m_{2}v_{1}^{2}}_{c}=0 \)
\[ \underbrace{\left(m_{2}+m_{1}\right)}_{a}\underbrace{v_{1f}^{2}}_{x^{2}}-\underbrace{2m_{1}v_{1}}_{b}\underbrace{v_{1f}}_{x}+\underbrace{m_{1}v_{1}^{2}-m_{2}v_{1}^{2}}_{c}=0 \]
\[ \begin{align} & \Delta=b^{2}-4ac=\left(-2m_{1}v_{1}\right)^{2}-4\left(m_{2}+m_{1}\right)\left(m_{1}v_{1}^{2}-m_{2}v_{1}^{2}\right)\\[5pt] & \Delta=4m_{1}^{2}v_{1}^{2}-4\left(m_{1}m_{2}v_{1}^{2}-m_{2}^{2}v_{1}^{2}+m_{1}^{2}v_{1}^{2}-m_{1}m_{2}v_{1}^{2}\right)\\[5pt] & \Delta=4m_{1}^{2}v_{1}^{2}-4\left(-m_{2}^{2}v_{1}^{2}+m_{1}^{2}v_{1}^{2}\right)\\[5pt] & \Delta=4m_{1}^{2}v_{1}^{2}+4m_{2}^{2}v_{1}^{2}-4m_{1}^{2}v_{1}^{2}\\[5pt] & \Delta =4m_{2}^{2}v_{1}^{2}\\[10pt] & v_{1f}=\dfrac{-b\pm\sqrt{\Delta \;}}{2a}=\dfrac{-\left(-2m_{1}v_{1}\right)\pm\sqrt{4m_{2}^{2}v_{1}^{2}\;}}{2(m_{1}+m_{2})}\\[5pt] & v_{1f}=\dfrac{2m_{1}v_{1}\pm2m_{2}v_{1}}{2(m_{1}+m_{2})} \end{align} \]
\[ \begin{gather} v_{1f}=\frac{(m_{1}+m_{2})}{(m_{1}+m_{2})}v_{1}\\[5pt] v_{1f}=v_{1} \tag{XIV} \end{gather} \]
\[ \text{or} \]
\[ \begin{gather} v_{1f}=\frac{(m_{1}-m_{2})}{(m_{1}+m_{2})}v_{1} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {v_{1f}=\frac{(m_{1}-m_{2})}{(m_{1}+m_{2})}v_{1}} \end{gather} \]
substituting this solution into equation (XII)
\[ \begin{gather} v_{2f}=\frac{1}{m_{2}}\left[m_{1}v_{1}-m_{1}\frac{\left(m_{1}-m_{2}\right)}{(m_{1}+m_{2})}v_{1}\right]\\[5pt] v_{2f}=\frac{1}{m_{2}}\left[\frac{m_{1}v_{1}(m_{1}+m_{2})-m_{1}\left(m_{1}-m_{2}\right)v_{1}}{(m_{1}+m_{2})}\right]\\[5pt] v_{2f}=\frac{1}{m_{2}}\left[\frac{m_{1}^{2}v_{1}+m_{1}m_{2}v_{1}-m_{1}^{2}v_{1}+m_{1}m_{2}v_{1}}{(m_{1}+m_{2})}\right]\\[5pt] v_{2f}=\frac{1}{\cancel{m_{2}}}\left[\frac{2m_{1}\cancel{m_{2}}v_{1}}{(m_{1}+m_{2})}\right] \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {v_{2f}=\frac{2m_{1}v_{1}}{(m_{1}+m_{2})}} \end{gather} \]

Figure 2

If m1 > m2, the final speed of ball 1 will be positive, v1f > 0, since m1m2 > 0, the final speed of ball 2 will also be positive, v2f > 0. This means that after the collision, ball 1 continues to move in the same direction of the trajectory with a lower speed, and ball 2, which was at rest, begins to move in the same direction (Figure 2-A).
If m1 < m2, the final speed of ball 1 will be negative, v1f < 0, since m1m2 < 0, the final speed of ball 2 will be positive, v2f > 0. This means that ball 1 moveing in the same direction of the trajectory, reverses its movement after the impact and returns in the oposite direction the trajectory, ball 2 begins to move in the same direction of the trajectory (Figure 2-B).
Substituting solution (XIV) into equation (XII)
\[ \begin{gather} v_{2f}=\frac{1}{m_{2}}(m_{1}v_{1}-m_{1}v_{1})\\[5pt] v_{2f}=0 \tag{XV} \end{gather} \]

Note: Solutions (XIV) and (XV) were not used, as they are physically impossible. Ball 1 would continue with its speed in the same direction of the trajectory and ball 2 would continue at rest, there would be no collision, ball 1 would be a “ghost ball” passing through ball 2 (Figure 3).
Figura 3


b) Lettng m1 = m2 = m in system (XI)
\[ \begin{gather} \left\{ \begin{matrix} \;\cancel{m}v_{1}-\cancel{m}v_{2}=\cancel{m}v_{1f}+\cancel{m}v_{2f}\\ \;\cancel{m}v_{1}^{2}+\cancel{m}v_{2}^{2}=\cancel{m}v_{1f}^{2}+\cancel{m}v_{2f}^{2} \end{matrix} \right. \\[5pt] \left\{ \begin{matrix} \;v_{1}-v_{2}=v_{1f}+v_{2f}\\ \;v_{1}^{2}+v_{2}^{2}=v_{1f}^{2}+v_{2f}^{2} \end{matrix} \right. \end{gather} \]
solving the first equation for v2f
\[ \begin{gather} v_{2f}=v_{1}-v_{2}-v_{1f} \tag{XVI} \end{gather} \]
and substituting in the second equation
\[ \begin{gather} v_{1}^{2}+v_{2}^{2}=v_{1f}^{2}+(v_{1}-v_{2}-v_{1f})^{2} \end{gather} \]
the term in parentheses on the right-hand side of the equality is of type \( (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab-2ac+2bc \)
\( (a-b-c)^{2}=a^{2}+b^{2}+c^{2}-2ab-2ac+2bc \)
applying to the equation above
\[ \begin{gather} v_{1}^{2}+v_{2}^{2}=v_{1f}^{2}+v_{1}^{2}-2v_{1}v_{2}-2v_{1}v_{1f}+v_{2}^{2}+2v_{2}v_{1f}+v_{1f}^{2} \end{gather} \]

Note: We can directly multiply the two terms
\[ \begin{array}{l} \begin{array}{l} v_{1}-v_{2}-v_{1f}\\ v_{1}-v_{2}-v_{1f} \end{array}\\ \hline \begin{alignat}{4} & v_{1}^{2} & - & v_{1}v_{2} & - & v_{1}v_{1f}\\ & & - & v_{1}v_{2} & & & + & v_{2}^{2} & + & v_{2}v_{1f}\\ & & & & - & v_{1}v_{1f} & & & + & v_{2}v_{1f} & + & v_{1f}^{2}\\ \hline & v_{1}^{2} & - & 2 v_{1}v_{2} & - & 2 v_{1}v_{1f} & + & v_{2}^{2} & + & 2 v_{2}v_{1f} & + & v_{1f}^{2} \end{alignat}\\ \end{array} \]

\[ \begin{gather} \cancel{v_{1}^{2}}+\cancel{v_{2}^{2}}=\cancel{v_{1}^{2}}-2v_{1}v_{2}-2v_{1}v_{1f}+\cancel{v_{2}^{2}}+2v_{2}v_{1f}+v_{1f}^{2}\\[5pt] 0=v_{1f}^{\;2}-2v_{1}v_{2}-2v_{1}v_{1f}+2v_{2}v_{1f}+v_{1f}^{2}\\[5pt] 2v_{1f}^{;2}+\left(2v_{2}-2v_{1}\right)v_{1f}-2v_{1}v_{2}=0 \end{gather} \]
This is a Quadratuc Equation of type \( ax^{2}+bx+c=0 \) where the unknown is the value v1f.

Solution of   \( \underbrace{2}_{a}\underbrace{v_{1f}^{2}}_{x^{2}}+\underbrace{\left(2v_{2}-2v_{1}\right)}_{b}\underbrace{v_{1f}}_{x}-\underbrace{2v_{1}v_{2}}_{c}=0 \)
\( \underbrace{2}_{a}\underbrace{v_{1f}^{2}}_{x^{2}}+\underbrace{\left(2v_{2}-2v_{1}\right)}_{b}\underbrace{v_{1f}}_{x}-\underbrace{2v_{1}v_{2}}_{c}=0 \)
\[ \begin{align} & \Delta=b^{2}-4ac=\left(2v_{2}-2v_{1}\right)^{2}-4.2\left(-2v_{1}v_{2}\;\right)\\[5pt] & \Delta=4v_{2}^{2}-8v_{1}v_{2}+4v_{1}^{2}-8\left(-2v_{1}v_{2}\right)\\[5pt] & \Delta =4v_{1}^{2}-8v_{1}v_{2}+4v_{2}^{2}+16v_{1}v_{2}\\[5pt] & \Delta=4v_{1}^{2}+8v_{1}v_{2}+4v_{2}^{2}\\[5pt] & \Delta=4\left(v_{1}^{2}+2v_{1}v_{2}+v_{2}^{2}\right) \end{align} \]
the term in parentheses is a special binomia of the type \( (a^{2}+2ab+b^{2})=(a+b)^{2} \)
\[ \begin{align} & \Delta =4\left(v_{1}+v_{2}\right)^{2} \\[10pt] & v_{1f}=\frac{-b\pm \sqrt{\Delta}}{2a}=\frac{-\left(2v_{2}-2v_{1}\right)\pm \sqrt{4\left(v_{1}+v_{2}\right)^{2}}}{2\times 2}\\[5pt] & v_{1f}=\frac{\cancel{2}\left(v_{1}-v_{2}\right)\pm \cancel{2}\left(v_{1}+v_{2}\right)}{\cancel{2}\times 2}\\[5pt] & v_{1f}=\frac{v_{1}-v_{2}+v_{1}+v_{2}}{2}\qquad \text{ou}\qquad v_{1f}=\frac{v_{1}-v_{2}-v_{1}-v_{2}}{2}\\[5pt] & v_{1f}=\frac{2}{2}v_{\;1}\qquad \text{ou}\qquad v_{1f}=-\frac{2}{2}v_{\;2} \end{align} \]
\[ \begin{gather} v_{1f}=v_{1} \tag{XVII} \end{gather} \]
\[ \text{or} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {v_{1f}=-v_{2}} \end{gather} \]
substituting this solution into equation (XVI)
\[ \begin{gather} v_{2f}=v_{1}-v_{2}-(-v_{2})\\[5pt] v_{2f}=v_{1}-v_{2}+v_{2} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {v_{2f}=v_{1}} \end{gather} \]
In this case, the balls change their speed, ball 1 returns in the oposite direction of the trajectory with the speed equal to the speed of ball 2, while ball 2 returns in the same direction of the trajectory with the speed equal to the speed of ball 1 (Figure 4).
Figure 4

Substituting the solution (XVII) into equation (XVI)
\[ \begin{gather} v_{2f}=v_{1}-v_{2}-v_{1}\\[5pt] v_{2f}=-v_{2} \tag{XVIII} \end{gather} \]

Note: Solutions (XVII) and (XVIII) were not used, as they are physically impossible. Ball 1 would continue with its speed in the same direction of the trajectory and ball 2 would continue with its speed in the oposite direction of the trajectory, there would be no collision, there would be two “ghost balls” passing through each other (Figure 5).
Figure 5
advertisement