Calculate the energy loss in an inelastic head-on collision between two spheres of masses
m1 and
m2 that move in the same direction with speeds
v1 and
v2.
Problem data:
- Mass of sphere 1: m1;
- Mass of sphere 2: m2;
- Speed of sphere 1: v1;
- Speed of sphere 2: v2.
Problem diagram:
Solution
For the shock to occur, we assume
v1 >
v2, as the collision is
inelastic, the two spheres stick together after the collision, the momentum is conserved, and the kinetic
energy of the system, after the collision is less than the kinetic energy before the collision.
The momentum is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{Q=mv}
\end{gather}
\]
The kinetic energy is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{K=\frac{mv^{2}}{2}}
\end{gather}
\]
Writing the equations for spheres 1 and 2 in the situations before and after the collision
Before the collision:
\[
\begin{gather}
Q_{1}=m_{1}v_{1} \tag{I}
\end{gather}
\]
\[
\begin{gather}
Q_{2}=m_{2}v_{2} \tag{II}
\end{gather}
\]
\[
\begin{gather}
K_{1}^{i}=\frac{m_{1}v_{1}^{2}}{2} \tag{III}
\end{gather}
\]
\[
\begin{gather}
K_{2}^{i}=\frac{m_{2}v_{2}^{2}}{2} \tag{IV}
\end{gather}
\]
After the collision:
\[
\begin{gather}
Q=m_{1}v_{1}+m_{2}v_{2} \tag{V}
\end{gather}
\]
\[
\begin{gather}
K^{f}=\frac{m_{1}v^{2}}{2}+\frac{m_{2}v^{2}}{2} \tag{VI}
\end{gather}
\]
where
\( K_{1}^{i} \)
and
\( K_{2}^{i} \)
are the initial kinetic energies of spheres 1 and 2,
\( K^{f} \)
is the final kinetic energy of the set,
Q, and
v are the momentum and velocity of the system
after the collision
The dissipated energy Δ
E will be the difference between the final energy and the initial energy
of the spheres
\[
\begin{gather}
\Delta E=K^{f}-\left(K_{1}^{i}+K_{2}^{i}\right)
\end{gather}
\]
substituting equations (VI), (III), and (IV) into this equation
\[
\begin{gather}
\Delta E=\frac{m_{1}v^{2}}{2}+\frac{m_{2}v^{2}}{2}-\left(\frac{m_{1}v_{1}^{2}}{2}+\frac{m_{2}v_{2}^{2}}{2}\right)\\[5pt]
\Delta E=\frac{v^{2}}{2}\left(m_{1}+m_{2}\right)-\left(\frac{m_{1}v_{1}^{2}}{2}+\frac{m_{2}v_{2}^{2}}{2}\right) \tag{VII}
\end{gather}
\]
To obtain
v, we use the
Law of Conservation of Momentum using equations (I) and (II) before
the collision and equation (VI) after the collision
\[
\begin{gather}
Q^{i}=Q^{f}\\[5pt]
m_{1}v_{1}+m_{2}v_{2}=m_{1}v+m_{2}v\\[5pt]
m_{1}v_{1}+m_{2}v_{2}=v(m_{1}+m_{2})\\[5pt]
v=\frac{m_{1}v_{1}+m_{2}v_{2}}{m_{1}+m_{2}} \tag{VIII}
\end{gather}
\]
substituting equation (VIII) into equation (VII)
\[
\begin{gather}
\Delta E=\frac{1}{2}\left(\frac{m_{1}v_{1}+m_{2}v_{2}}{m_{1}+m_{2}}\right)^{2}\left(m_{1}+m_{2}\right)-\frac{m_{1}v_{1}^{2}}{2}-\frac{m_{2}v_{2}^{2}}{2}\\[5pt]
\Delta E=\frac{1}{2}\frac{\left(m_{1}v_{1}+m_{2}v_{2}\right)^{2}}{\left(m_{1}+m_{2}\right)^{\cancel{2}}}\cancel{\left(m_{1}+m_{2}\right)}-\frac{m_{1}v_{1}^{2}}{2}-\frac{m_{2}v_{2}^{2}}{2}\\[5pt]
\Delta E=\frac{\left(m_{1}v_{1}+m_{2}v_{2}\right)^{2}}{2\left(m_{1}+m_{2}\right)}-\frac{m_{1}v_{1}^{2}}{2}-\frac{m_{2}v_{2}^{2}}{2}
\end{gather}
\]
In the first term on the right-hand side of the equation, the denominator is a
Special Binomial Product
\( \left(a+b\right)^{2}=a^{2}+2 ab+b^{2} \)
\[ \left(a+b\right)^{2}=a^{2}+2 ab+b^{2} \]
writing the three terms on the right-hand side over the denominator
2(
m1+
m2), and expanding the
Special Binomial Product
\[
\begin{gather}
\Delta E=\frac{m_{1}^{2}v_{1}^{2}+2m_{1}v_{1}m_{2}v_{2}+m_{2}^{2}v_{2}^{2}-m_{1}v_{1}^{2}\left(m_{1}+m_{2}\right)-m_{2}v_{2}^{2}\left(m_{1}+m_{2}\right)}{2\left(m_{1}+m_{2}\right)}\\[5pt]
\Delta E=\frac{m_{1}^{2}v_{1}^{2}+2m_{1}v_{1}m_{2}v_{2}+m_{2}^{2}v_{2}^{2}-m_{1}^{2}v_{1}^{2}-m_{1}m_{2}v_{1}^{2}-m_{1}m_{2}v_{2}^{2}-m_{2}^{2}v_{2}^{2}}{2\left(m_{1}+m_{2}\right)}\\[5pt]
\Delta E=\frac{2m_{1}v_{1}m_{2}v_{2}-m_{1}m_{2}v_{1}^{2}-m_{1}m_{2}v_{2}^{2}}{2\left(m_{1}+m_{2}\right)}\\[5pt]
\Delta E=\frac{-m_{1}m_{2}\left(v_{1}^{2}-2v_{1}v_{2}+v_{2}^{2}\right)}{2\left(m_{1}+m_{2}\right)}
\end{gather}
\]
The term in parentheses in the numerator is a
Special Binomial Product
\( \left(a-b\right)^{2}=a^{2}-2 ab+b^{2} \)
\[ \left(a-b\right)^{2}=a^{2}-2 ab+b^{2} \]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\Delta E=\frac{-m_{1}m_{2}\left(v_{1}-v_{2}\right)^{2}}{2\left(m_{1}+m_{2}\right)}}
\end{gather}
\]