In the circuit below find the currents in the branches and their true directions.
Problem data:
Resistors
- R1 = 0.5 Ω;
- R2 = 0.5 Ω;
- R3 = 1 Ω;
- R4 = 0.5 Ω;
- R5 = 0.5 Ω;
- R6 = 3 Ω;
- R7 = 1 Ω.
Batteries
- E1 = 20 V;
- E2 = 20 V;
- E3 = 6 V;
Solution
First, at each circuit loop, we arbitrarily assign a direction of the current. In the
ABEFA loop,
we have the current
i1 clockwise, and in the
BCDEB loop we have the current
i2 clockwise (Figure 1)
Using the
Mesh Analysis to the mesh
i1 from point
A in the chosen direction,
forgetting the mesh
i2 (Figure 2)
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\sum_{n} V_{n}=0}
\end{gather}
\]
\[
\begin{gather}
R_{2}i_{1}+R_{4}(\;i_{1}-i_{2}\;)+E_{2}+R_{5}(\;i_{1}-i_{2}\;)+R_{3}i_{1}+R_{1}i_{1}-E_{1}=0
\end{gather}
\]
substituting the values of the problem
\[
\begin{gather}
0.5i_{1}+0.5(\;i_{1}-i_{2}\;)+20+0.5(\;i_{1}-i_{2}\;)+1i_{1}+0.5i_{1}-20=0\\[5pt]
0.5i_{1}+0.5(\;i_{1}-i_{2}\;)+0.5(\;i_{1}-i_{2}\;)+1i_{1}+0.5i_{1}=0\\[5pt]
0.5i_{1}+0.5i_{1}-0.5i_{2}+0.5i_{1}-0.5i_{2}+1i_{1}+0.5i_{1}=0\\[5pt]
3i_{1}-i_{2}=0 \tag{I}
\end{gather}
\]
Forgetting the mesh
i1 and using the
Mesh Analysis to the mesh
i2, as was
done above, we have for Figure 3, from point
B
\[
\begin{gather}
R_{6}i_{2}+E_{3}+R_{7}i_{2}+R_{5}(\;i_{2}-i_{1}\;)-E_{2}+R_{4}(\;i_{2}-i_{1}\;)=0
\end{gather}
\]
substituting the values of the problem
\[
\begin{gather}
3i_{2}+6+1i_{2}+0.5(\;i_{2}-i_{1}\;)-20+0.5(\;i_{2}-i_{1}\;)=0\\[5pt]
3i_{2}+i_{2}+0.5i_{2}-0.5i_{1}-14+0.5i_{2}-0.5i_{1}=0\\[5pt]
-i_{1}+5i_{2}=14 \tag{II}
\end{gather}
\]
Equations (I) and (II) can be written as a system of linear equations with two unknowns (
i1
and
i2)
\[
\left\{
\begin{array}{l}
\;3i_{1}-i_{2}=0\\
-i_{1}+5i_{2}=14
\end{array}
\right.
\]
solving the first equation for
i2
\[
\begin{gather}
i_{2}=3i_{1} \tag{III}
\end{gather}
\]
substituting this value in the second equation
\[
\begin{gather}
-i_{1}+5 \times 3i_{1}=14\\[5pt]
-i_{1}+15i_{1}=14\\[5pt]
14i_{1}=14\\[5pt]
i_{1}=\frac{14}{14}\\[5pt]
i_{1}=1\;\text{A}
\end{gather}
\]
Substituting this value into expression (III)
\[
\begin{gather}
i_{2}=3 \times 1\\[5pt]
i_{2}=3\;\text{A}
\end{gather}
\]
In the branch
BE a current
i3 is given by
\[
\begin{gather}
i_{3}=i_{2}-i_{1}\\[5pt]
i_{3}=3-1\\[5pt]
i_{3}=2\;\text{A}
\end{gather}
\]
The direction of the current
i3 will be the same as the current
i2
(the highest value).
As the values of the currents are all positive, this indicates that the directions chosen in Figure 1 are
correct. The values of the currents are
i1=1 A,
i2=2 A,
and
i3=3 A,
and their directions are shown in Figure 4.