Solved Problem on Mesh Analysis
advertisement   



In the circuit below find the currents in the branches and their true directions.



Problem data:

Resistors
  • R1 = 0.5 Ω;
  • R2 = 0.5 Ω;
  • R3 = 1 Ω;
  • R4 = 0.5 Ω;
  • R5 = 0.5 Ω;
  • R6 = 3 Ω;
  • R7 = 1 Ω.
Batteries
  • E1 = 20 V;
  • E2 = 20 V;
  • E3 = 6 V;
Solution

First, at each circuit loop, we arbitrarily assign a direction of the current. In the ABEFA loop, we have the current i1 clockwise, and in the BCDEB loop we have the current i2 clockwise (Figure 1)

Figure 1

Using the Mesh Analysis to the mesh i1 from point A in the chosen direction, forgetting the mesh i2 (Figure 2)

Figure 2
\[ \begin{gather} \bbox[#99CCFF,10px] {\sum_{n} V_{n}=0} \end{gather} \]
\[ \begin{gather} R_{2}i_{1}+R_{4}(\;i_{1}-i_{2}\;)+E_{2}+R_{5}(\;i_{1}-i_{2}\;)+R_{3}i_{1}+R_{1}i_{1}-E_{1}=0 \end{gather} \]
substituting the values of the problem
\[ \begin{gather} 0.5i_{1}+0.5(\;i_{1}-i_{2}\;)+20+0.5(\;i_{1}-i_{2}\;)+1i_{1}+0.5i_{1}-20=0\\[5pt] 0.5i_{1}+0.5(\;i_{1}-i_{2}\;)+0.5(\;i_{1}-i_{2}\;)+1i_{1}+0.5i_{1}=0\\[5pt] 0.5i_{1}+0.5i_{1}-0.5i_{2}+0.5i_{1}-0.5i_{2}+1i_{1}+0.5i_{1}=0\\[5pt] 3i_{1}-i_{2}=0 \tag{I} \end{gather} \]
Forgetting the mesh i1 and using the Mesh Analysis to the mesh i2, as was done above, we have for Figure 3, from point B

Figure 3
\[ \begin{gather} R_{6}i_{2}+E_{3}+R_{7}i_{2}+R_{5}(\;i_{2}-i_{1}\;)-E_{2}+R_{4}(\;i_{2}-i_{1}\;)=0 \end{gather} \]
substituting the values of the problem
\[ \begin{gather} 3i_{2}+6+1i_{2}+0.5(\;i_{2}-i_{1}\;)-20+0.5(\;i_{2}-i_{1}\;)=0\\[5pt] 3i_{2}+i_{2}+0.5i_{2}-0.5i_{1}-14+0.5i_{2}-0.5i_{1}=0\\[5pt] -i_{1}+5i_{2}=14 \tag{II} \end{gather} \]
Equations (I) and (II) can be written as a system of linear equations with two unknowns (i1 and i2)
\[ \left\{ \begin{array}{l} \;3i_{1}-i_{2}=0\\ -i_{1}+5i_{2}=14 \end{array} \right. \]
solving the first equation for i2
\[ \begin{gather} i_{2}=3i_{1} \tag{III} \end{gather} \]
substituting this value in the second equation
\[ \begin{gather} -i_{1}+5 \times 3i_{1}=14\\[5pt] -i_{1}+15i_{1}=14\\[5pt] 14i_{1}=14\\[5pt] i_{1}=\frac{14}{14}\\[5pt] i_{1}=1\;\text{A} \end{gather} \]
Substituting this value into expression (III)
\[ \begin{gather} i_{2}=3 \times 1\\[5pt] i_{2}=3\;\text{A} \end{gather} \]
In the branch BE a current i3 is given by
\[ \begin{gather} i_{3}=i_{2}-i_{1}\\[5pt] i_{3}=3-1\\[5pt] i_{3}=2\;\text{A} \end{gather} \]
The direction of the current i3 will be the same as the current i2 (the highest value).
As the values of the currents are all positive, this indicates that the directions chosen in Figure 1 are correct. The values of the currents are i1=1 A, i2=2 A, and i3=3 A, and their directions are shown in Figure 4.

Figure 4
advertisement