Solved Problem on Electric Field
advertisement   



The ratio between the electric charges of two spheres is 3/4, the ratio between its radii is 5/8. Determine the ratio between the densities of electric charge.


Problem data:
  • Ratio between charges of the spheres:    \( \dfrac{q_{1}}{q_{2}}=\dfrac{3}{4} \);
  • Ratio between the radii of the spheres:    \( \dfrac{r_{1}}{r_{2}}=\dfrac{5}{8} \).
Solution

The surface charge density σ is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\sigma =\frac{Q}{S}} \tag{I} \end{gather} \]
where Q is the charge of the body and S the area of ​​its surface, from Geometry, the area of ​​a sphere is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {S=4\pi r^{2}} \tag{II} \end{gather} \]
Substituting the expression (II) into (I) and writing the expression for the density of charges of the spheres 1 and 2, we have
\[ \begin{gather} \sigma_{1}=\frac{q_{1}}{4\pi r_{1}^{2}} \tag{III-a} \end{gather} \]
\[ \begin{gather} \sigma_{2}=\frac{q_{2}}{4\pi r_{2}^{2}} \tag{III-b} \end{gather} \]
To find the ratio between the densities of electric charge, we divide the expression (III-a) by (III-B)
\[ \begin{gather} \frac{\sigma_{1}}{\sigma_{2}}=\frac{\dfrac{q_{1}}{\cancel{4\pi} r_{1}^{2}}}{\dfrac{q_{2}}{\cancel{4\pi} r_{2}^{2}}}\\ \frac{\sigma_{1}}{\sigma_{2}}=\frac{q_{1}}{r_{1}^{2}}\frac{r_{2}^{2}}{q_{2}} \tag{IV} \end{gather} \]
With the problem data, we can write the charge and radius of sphere 1 as a function of charge and radius of sphere 2
\[ \begin{gather} \frac{q_{1}}{q_{2}}=\frac{3}{4}\\ q_{1}=\frac{3}{4}q_{2} \tag{V} \end{gather} \]
\[ \begin{gather} \frac{r_{1}}{r_{2}}=\frac{5}{8}\\ r_{1}=\frac{5}{8}r_{2} \tag{VI} \end{gather} \]
substituting expressions (V) and (VI) into the expression (IV), we obtain
\[ \begin{gather} \frac{\sigma_{1}}{\sigma_{2}}=\frac{\dfrac{3}{4}q_{2}}{\left(\dfrac{5}{8}r_{2}\right)^{2}}\frac{r_{2}^{2}}{q_{2}}\\[5pt] \frac{\sigma_{1}}{\sigma_{2}}=\frac{\dfrac{3}{4}\cancel{q_{2}}}{\dfrac{25}{64}\cancel{r_{2}^{2}}}\;\frac{\cancel{r_{2}^{2}}}{\cancel{q_{2}}}\\[5pt] \frac{\sigma_{1}}{\sigma_{2}}=\frac{\dfrac{3}{4}}{\dfrac{25}{64}}\\[5pt] \frac{\sigma_{1}}{\sigma_{2}}=\frac{3}{4}\times \frac{64}{25} \end{gather} \]
\[ \bbox[#FFCCCC,10px] {\frac{\sigma_{1}}{\sigma_{2}}=\frac{48}{25}} \]

Note: As \( \frac{\sigma_{1}}{\sigma_{2}}=1,92 \Rightarrow \sigma_{1}=1,92 \sigma_{2} \) this means that the density of charge in sphere 1 is 1.92 times higher than the density of charge of the sphere 2.
advertisement