Two metallic blocks
A and
B, at 0 °C, have equal volumes to 250.75 cm
3 and
250 cm
3, respectively. The averages coefficients of linear expansion are, respectively,
2×10
−5 °C
−1 and 3×10
−5 °C
−1.
Determine:
a) The temperature in which the blocks have equal volumes;
b) What is the volume of the blocks in the temperature calculated in item (a).
Problem data:
- Initial volume of block A: V0A = 250.75 cm3;
- Initial volume of block B: V0B = 250 cm3;
- Coefficient of linear expansion of block A: αA = 2× 10−5 °C−1;
- Coefficient of linear expansion of block B: αB = 3× 10−5 °C−1;
- Initial system temperature: t0 = 0 °C.
Problem diagram:
Solution
a) The problem gives the coefficients of linear expansion of the blocks, and we need the coefficient of
volumetric expansion
\[ \bbox[#99CCFF,10px]
{\gamma =3\alpha}
\]
For block
A:
\[
\begin{gather}
\gamma_{A}=3\alpha_{A}\\
\gamma_{A}=3\times 2\times 10^{-5}\\
\gamma_{A}=6\times 10^{-5}\;°\text{C}^{-1}
\end{gather}
\]
For block
B:
\[
\begin{gather}
\gamma _{B}=3\alpha_{B}\\
\gamma_{B}=3\times 6\times 10^{-5}\\
\gamma_{B}=9\times 10^{-5}\;°\text{C}^{-1}
\end{gather}
\]
The final volume is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{V=V_{0}(1+\gamma \Delta t)} \tag{I}
\end{gather}
\]
Writing the expression (I) for the two blocks, we have
\[
\begin{gather}
V_{A}=V_{0A}[1+\gamma_{A}(t-t_{0})]\\
V_{A}=250.75\times [1+6\times 10^{-5}\times (t-0)]\\
V_{A}=250.75\times [1+6\times 10^{-5}t] \tag{II}
\end{gather}
\]
\[
\begin{gather}
V_{B}=V_{0B}[1+\gamma_{B}(t-t_{0})]\\
V_{B}=250\times [1+9\times 10^{-5}\times (t-0)]\\
V_{B}=250\times [1+9\times 10^{-5}t] \tag{III}
\end{gather}
\]
With the condition that volumes are equal, equating expressions (II) and (III)
\[
\begin{gather}
V_{A}=V_{B}\\
250.75.[1+6\times 10^{-5}t]=250\times [1+9\times 10^{-5}t]\\
250.75+250.75\times 6\times 10^{-5}t=250+250\times 9\times 10^{-5}t\\
250.75+1504.5\times 10^{-5}t=250+2250\times 10^{-5}t\\
2250\times 10^{-5}t-1504.5\times 10^{-5}t=250.75-250\\
745.5\times 10^{-5}t=0.75\\
t=\frac{0.75}{745.5\times 10^{-5}}\\
t=\frac{0.75\times 10^{5}}{745.5}\\
t=\frac{75000}{745.5}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{t\approx 100.6\;°\text{C}}
\]
b) Substituting the result of item (a) into the expression (II), we have the volume of the blocks
\[
\begin{gather}
V_{A}=250.75\times [1+6\times 10^{-5}\times 100.6]\\
V_{A}=250.75\times [1+603.6\times 10^{-5}]\\
V_{A}=250.75\times [1+0.006036]\\
V_{A}=250.75\times [1.006036]
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{V_{A}=V_{B}\approx 252.3\;\text{cm}^{3}}
\]
Note: We would obtain the same result if we had substituted the temperature into the
expression (III)
\[
\begin{gather}
V_{B}=250\times [1+9\times 10^{-5}\times 100.6]\\
V_{B}=250\times [1+905.4\times 10^{-5}]\\
V_{B}=250\times [1+0.009054]\\
V_{B}=250\times [1.009054]\\
V_{B}=V_{A}\approx 252.3\;\text{cm}^{3}
\end{gather}
\]