In the system of the figure, body A slides on a horizontal surface without friction, dragged by
body B which moves downward. Bodies A and B are tied by a rope of negligible mass
parallel to the surface and pass through a frictionless pulley of negligible mass. The masses of
A and B are, respectively, 32 kg and 8 kg. Find the acceleration of the system and the
tension on the rope.
Problem data:
- Mass of body A: mA = 32 kg;
- Mass of body B: mB = 8 kg;
- Acceleration due to gravity: g = 9.8 m/s2.
Problem diagram:
We choose a frame of reference pointing to the right in the same direction as the acceleration.
Drawing a
Free-Body Diagram for each block.
-
Block A (Figure 2):
-
Vertical direction:
- \( \vec W_{\small A} \): weight of body A;
- \( \vec N_{\small A} \): normal reaction force of the surface on the body.
-
Horizontal direction:
- \( \vec T \): tension force on the cord.
-
Body B (Figure 3):
- \( \vec W_{\small B} \): weight of body B;
- \( \vec T \): tension force on the rope.
Solution
Applying
Newton's Second Law
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\vec F=m\vec a}
\end{gather}
\]
In the vertical direction, the weight and the normal force cancel out
In the horizontal direction
\[
\begin{gather}
T=m_{\small A}a \tag{I}
\end{gather}
\]
In the horizontal direction, no forces are acting.
In the vertical direction
\[
\begin{gather}
W_{\small B}-T=m_{\small B}a \tag{II}
\end{gather}
\]
The weight is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{W=mg}
\end{gather}
\]
for body
B
\[
\begin{gather}
W_{\small B}=m_{\small B}g \tag{III}
\end{gather}
\]
substituting equation (III) into equation (II)
\[
\begin{gather}
m_{\small B}g-T=m_{\small B}a \tag{IV}
\end{gather}
\]
Expressions (I) and (II) can be written as a system of linear equations with two variables
(
T and
a), adding the two equations
\[
\begin{gather}
\frac{
\left\{
\begin{array}{rr}
\cancel{T}&=m_{\small A}a\\
m_{\small B}g-\cancel{T}&=m_{\small B}a
\end{array}
\right.}
{m_{\small B}g=\left(m_{\small A}+m_{\small B}\right)a}\\[5pt]
a=\frac{m_{\small B}g}{m_{\small A}+m_{\small B}}\\[5pt]
a=\frac{(8\;\mathrm{kg})\left(9.8\;\mathrm{\frac{m}{s^2}}\right)}{32\;\mathrm{kg}+8\;\mathrm{kg}}\\[5pt]
a=\frac{78.4\;\mathrm{\frac{\cancel{kg}.m}{s^2}}}{40\;\mathrm{\cancel{kg}}}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{a\approx 1.9\;\mathrm{m/s^2}}
\end{gather}
\]
Substituting the mass of body
A and the acceleration found above, in the first equation of the system
the tension force on hope will be
\[
\begin{gather}
T=(32\;\mathrm{kg})\left(1.9\;\mathrm{\frac{m}{s^2}}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{T\approx 62.7\;\mathrm N}
\end{gather}
\]