Exercício Resolvido de Limites
u)
\( \displaystyle \lim_{x\rightarrow 4}{\frac{\sqrt{2x+1\;}-3}{\sqrt{x-2\;}-\sqrt{2\;}}} \)
Observação: Substituindo diretamente o valor
\[
\lim_{x\rightarrow 4}{\frac{\sqrt{2.4+1\;}-3}{\sqrt{4-2\;}-\sqrt{2\;}}}=\frac{0}{0}
\]
temos uma indeterminação do tipo
\( \frac{0}{0} \)
Multiplicando o numerador e o denominador por
\( \sqrt{x-2\;}+\sqrt{2\;} \)
e por
\( \sqrt{2x+1\;}-3 \)
\[
\begin{gather}
\lim_{x\rightarrow 4}{\frac{\sqrt{2x+1\;}-3}{\sqrt{x-2\;}-\sqrt{2\;}}}.\frac{\left(\sqrt{x-2\;}+\sqrt{2\;}\right)}{\left(\sqrt{x-2\;}+\sqrt{2\;}\right)}.\frac{\left(\sqrt{2x+1\;}+3\right)}{\left(\sqrt{2x+1\;}+3\right)}\\[5pt]
\lim_{x\rightarrow 4}{\frac{\left(\sqrt{2x+1\;}\right)^{2}+\cancel{3\sqrt{2x+1\;}}-\cancel{3\sqrt{2x+1\;}}-3.3}{\left(\sqrt{x-2\;}\right)^{2}+\cancel{\sqrt{2\;}\sqrt{x-2\;}}-\cancel{\sqrt{2\;}\sqrt{x-2\;}}-\sqrt{2\;}.\sqrt{2\;}}}.\frac{\left(\sqrt{x-2\;}+\sqrt{2\;}\right)}{\left(\sqrt{2x+1\;}+3\right)}\\[5pt]
\lim_{x\rightarrow 4}{\frac{2x+1-9}{x-2-2}}.\frac{\left(\sqrt{x-2\;}+\sqrt{2\;}\right)}{\left(\sqrt{2x+1\;}+3\right)}\\\lim_{x\rightarrow 4}{\frac{2x-8}{x-4}}.\frac{\left(\sqrt{x-2\;}+\sqrt{2\;}\right)}{\left(\sqrt{2x+1\;}+3\right)}\\[5pt]
\lim_{x\rightarrow 4}{\frac{2\cancel{(x-4)}}{\cancel{(x-4)}}}.\frac{\left(\sqrt{x-2\;}+\sqrt{2\;}\right)}{\left(\sqrt{2x+1\;}+3\right)}\\[5pt]
\lim_{x\rightarrow 4}{2}.\frac{\left(\sqrt{4-2\;}+\sqrt{2\;}\right)}{\left(\sqrt{2.4+1\;}+3\right)}=2.\frac{\left(\sqrt{2\;}+\sqrt{2\;}\right)}{\left(\sqrt{9\;}+3\right)}\text{=}\\[5pt]
\ \ \text{=}2.\frac{2\sqrt{2\;}}{3+3}=2.\frac{2\sqrt{2\;}}{6}=\frac{2\sqrt{2\;}}{3}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\lim_{x\rightarrow4}{\frac{\sqrt{2x+1\;}-3}{\sqrt{x-2\;}-\sqrt{2\;}}}=\frac{2\sqrt{2\;}}{3}}
\]