Resolver a seguinte equação.
\[
x^{2}-\left(\frac{a^{2}+b^{2}}{ab}\right)x+1=0\quad \text{,}\quad ab\neq0
\]
Calculando Δ
\[ \bbox[#99CCFF,10px]
{\Delta =b^{2}-4ac}
\]
\[
\begin{gather}
\Delta=\left(\frac{a^{2}+b^{2}}{ab}\right)^{2}-4.1.1\\
\Delta=\frac{\left(a^{2}+b^{2}\right)^{2}}{a^{2}b^{2}}-4
\end{gather}
\]
desenvolvendo o termo do numerador pelo
Produto Notável
\[ \bbox[#99CCFF,10px]
{(a+b)^{2}=a^{2}+2ab+b^{2}}
\]
\[
\begin{gather}
\Delta=\frac{\left[\left(a^{2}\right)^{2}+2a^{2}b^{2}+\left(b^{2}\right)^{2}\right]}{a^{2}b^{2}}-4\\[5pt]
\Delta=\frac{a^{4}+2a^{2}b^{2}+b^{4}}{a^{2}b^{2}}-4\\[5pt]
\Delta=\frac{a^{4}+b^{4}}{a^{2}b^{2}}+\frac{2a^{2}b^{2}}{a^{2}b^{2}}-4\\[5pt]
\Delta=\frac{a^{4}+b^{4}}{a^{2}b^{2}}+2-4\\[5pt]
\Delta=\frac{a^{4}+b^{4}}{a^{2}b^{2}}-2
\end{gather}
\]
multiplicando e dividindo o fator 2 por
a2b2
\[
\begin{gather}
\Delta=\frac{a^{4}+b^{4}}{a^{2}b^{2}}-2\frac{a^{2}b^{2}}{a^{2}b^{2}}\\[5pt]
\Delta=\frac{a^{4}+b^{4}-2a^{2}b^{2}}{a^{2}b^{2}}
\end{gather}
\]
escrevendo o numerador na forma do
Produto Notável
\[ \bbox[#99CCFF,10px]
{a^{2}-2ab+b^{2}=(a-b)^{2}}
\]
\[
\begin{gather}
\Delta=\frac{\left(a^{2}-b^{2}\right)^{2}}{a^{2}b^{2}}\\
\Delta=\left(\frac{a^{2}-b^{2}}{ab}\right)^{2}
\end{gather}
\]
Cálculo das raízes
\[ \bbox[#99CCFF,10px]
{x_{1,2}=\frac{-b\pm \sqrt{\Delta \;}}{2a}}
\]
\[
\begin{gather}
x_{1,2}=\frac{-\left[-\left(\dfrac{a^{2}+b^{2}}{ab}\right)\right]\pm\sqrt{\left(\dfrac{a^{2}-b^{2}}{ab}\right)^{2}\;}}{2.1}\\[5pt]
x_{1,2}=\frac{\left(\dfrac{a^{2}+b^{2}}{ab}\right)\pm\left(\dfrac{a^{2}-b^{2}}{ab}\right)}{2}\\[5pt]
x_{1}=\frac{a^{2}+b^{2}+a^{2}-b^{2}}{2ab}=\frac{\cancel{2}a^{\cancel{2}}}{\cancel{2}\cancel{a}b}=\frac{a}{b}\\[5pt]
x_{1}=\frac{a^{2}+b^{2}-a^{2}+b^{2}}{2ab}=\frac{\cancel{2}b^{\cancel{2}}}{\cancel{2}a\cancel{b}}=\frac{b}{a}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{V=\left\{\frac{a}{b},\frac{b}{a}\right\}}
\]