Exercice Résolu sur les Condensateurs
publicité   



Trouve le condensateur équivalent entre les points A et B du circuit représenté dans la figure.


Solution

Redessinons le circuit de la manière suivante pour faciliter la visualisation (Figure 1)

Figure 1

Ce type de circuit est résolu en utilisant la technique appelée transformation Étoile-Triangle (également appelée Y-Δ), en apportant la modification suivante au circuit (Figure 2)

Figure 2

Le condensateur Ca sera donné par
\[ \begin{gather} \bbox[#99CCFF,10px] {C_a=\frac{C_1 C_2+C_1 C_3+C_2 C_3}{C_3}} \end{gather} \]
\[ \begin{gather} C_a=\frac{2C\,C+2C\,2C+C\,2C}{2C}\\[5pt] C_a=\frac{2C^2+4C^2+2C^2}{2C}\\[5pt] C_a=\frac{\cancelto{4}{8}C^{\cancel 2}}{\cancel 2\cancel C}\\[5pt] C_a=4C \tag{I} \end{gather} \]
Le condensateur Cb sera donné par
\[ \begin{gather} \bbox[#99CCFF,10px] {C_b=\frac{C_1 C_2+C_1 C_3+C_2 C_3}{C_2}} \end{gather} \]
\[ \begin{gather} C_b=\frac{2C\,C+2C\,2C+C\,2C}{C}\\[5pt] C_b=\frac{2C^2+4C^2+2C^2}{C}\\[5pt] C_b=\frac{8C^{\cancel 2}}{\cancel C}\\[5pt] C_b=8C \tag{II} \end{gather} \]
Le condensateur Cc sera donné par
\[ \begin{gather} \bbox[#99CCFF,10px] {C_c=\frac{C_1 C_2+C_1 C_3+C_2 C_3}{C_1}} \end{gather} \]
\[ \begin{gather} C_c=\frac{2C\,C+2C\,2C+C\,2C}{2C}\\[5pt] C_c=\frac{2C^2+4C^2+2C^2}{2C}\\[5pt] C_c=\frac{\cancelto{4}{8}C^{\cancel 2}}{\cancel 2\cancel C}\\[5pt] C_c=4C \tag{III} \end{gather} \]
Alors, en utilisant les valeurs de (I), (II) et (III), le circuit à résoudre devient le suivant (Figure 3)

Figure 3

Les deux condensateurs entre les points D et E, Cb et C, sont en série, le condensateur équivalent C4 est donné par
\[ \begin{gather} \bbox[#99CCFF,10px] {C_{eq}=\frac{C_A C_B}{C_A+C_B}} \tag{IV} \end{gather} \]
\[ \begin{gather} C_4=\frac{C_b\,C}{C_b+C}\\[5pt] C_4=\frac{8C\,C}{8C+C}\\[5pt] C_4=\frac{8C^{\cancel 2}}{9\cancel C}\\[5pt] C_4=\frac{8}{9}C \end{gather} \]
Les deux condensateurs entre les points D et F, Cc et 2C, sont en série, en appliquant l'expression (IV)), le condensateur équivalent C5 entre eux sera
\[ \begin{gather} C_5=\frac{C_c\,2C}{C_c+2C}\\[5pt] C_5=\frac{4 C\,2C}{4C+2C}\\[5pt] C_5=\frac{\cancelto{4}8C^{\cancel{2}}}{\cancelto{3}6\cancel{C}}\\[5pt] C_5=\frac{4}{3}C \end{gather} \]
Le circuit peut être représenté comme (Figure 4)

Figure 4

Les deux condensateurs obtenus ci-dessus sont connectés en parallèle, le condensateur équivalent est donné par
\[ \begin{gather} \bbox[#99CCFF,10px] {C_{eq}=\sum_{i=1}^{n}C_{i}} \end{gather} \]
le condensateur équivalent C6 entre eux sera
\[ \begin{gather} C_6=\frac{8}{9}C+\frac{4}{3}C \end{gather} \]
en multipliant le numérateur et le dénominateur du deuxième terme du côté droit de l'égalité par 3
\[ \begin{gather} C_6=\frac{8}{9}C+\frac{3}{3}\times\frac{4}{3}C\\[5pt] C_6=\frac{8}{9}C+\frac{12}{9}C\\[5pt] C_6=\frac{20}{9}C \end{gather} \]
Le circuit se réduit à deux condensateurs en série (Figure 5)

Figure 5

le condensateur équivalent Ceq du circuit sera
\[ \begin{gather} C_{eq}=\frac{4C\times\dfrac{20}{9}C}{4C+\dfrac{20}{9}C} \end{gather} \]
dans le dénominateur, nous multiplions le numérateur et le dénominateur du premier terme par 9
\[ \begin{gather} C_{eq}=\frac{4 C\times\dfrac{20}{9}C}{\dfrac{9}{9}\times 4C+\dfrac{20}{9}C}\\[5pt] C_{eq}=\frac{\dfrac{80}{9}C^2 }{\dfrac{36}{9}C+\dfrac{20}{9}C}\\[5pt] C_{eq}=\frac{\dfrac{80}{\cancel 9}C^{\cancel 2}}{\dfrac{56}{\cancel 9}\cancel C}\\[5pt] C_{eq}=\frac{\cancelto{10}{80}}{\cancelto{7}{56}}C \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {C_{eq}=\frac{10}{7}C} \end{gather} \]
publicité