Exercício Resolvido de Fórmula Integral de Cauchy
publicidade   



e)   \( \displaystyle \oint_{{|z|=1}}\frac{z^{2}+z+\mathrm{i}}{(4z-\mathrm{i})^{3}}\;dz \)


Escrevendo a integral como
\[ \begin{gather} \oint_{|z|=1}\frac{z^{2}+z+\mathrm{i}}{\left[4\left(z-\dfrac{\mathrm{i}}{4}\right)\right]^{3}}\;dz\\[5pt] \oint_{|z|=1}\frac{z^{2}+z+\mathrm{i}}{64\left(z-\dfrac{\mathrm{i}}{4}\right)^{3}}\;dz \end{gather} \]
O caminho é dado pela circunferência de raio 1 com centro na origm (0, 0), percorrida no sentido anti-horário (Figura 1).
Figura 1
A Fórmula Integral de Cauchy na forma geral é dada por
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{I} \end{gather} \]
Identificando os termos da integral
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi \mathrm{i}}\;\oint_{{C}}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z- \bbox[#FFD9CC,2px] {z_{0}} \right)^{ \bbox[#FFCC66,2px] {n} +1}}\;dz=\oint_{{|z|=1}} \bbox[#FFFF66,2px] {{\frac{z^{2}+z+\mathrm{i}}{64}}} \frac{1}{\left(z- \bbox[#FFD9CC,2px] {{\dfrac{\mathrm{i}}{4}}} \right)^{ \bbox[#FFCC66,2px] {2} +1}}\;dz \end{gather} \]

o ponto   \( z-\frac{\mathrm{i}}{4}=0\Rightarrow z=\frac{\mathrm{i}}{4} \)   está no interior da região determinada pelo contorno C, ele será usado no cálculo da integral, temos   \( f(z)=\frac{z^{2}+z+\mathrm{i}}{64} \),   \( z_{0}=\frac{\mathrm{i}}{4} \),   e n = 1, escrevendo a expressão (I)
\[ \begin{gather} \oint_{{C}}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f^{(n)}(z_{0})\\[5pt] \oint_{{|z|=1}}\frac{z^{2}+z+\mathrm{i}}{(4z-\mathrm{i})^{3}}\;dz=\frac{2\pi\mathrm{i}}{2!}\;f^{(2)}\left(\frac{\mathrm{i}}{4}\right) \end{gather} \]

Cálculo da derivada segunda de    \( \displaystyle f(z)=\frac{z^{2}+z+\mathrm{i}}{64} \)
\[ \begin{gather} \frac{df}{dz}=\frac{2z+1}{64}\\[5pt] \frac{d^{2}f}{dz^{2}}=\frac{2}{64}=\frac{1}{32} \end{gather} \]
\[ \begin{gather} \oint_{|z|=1}\frac{z^{2}+z+\mathrm{i}}{(4z-\mathrm{i})^{3}}\;dz=\frac{2\pi\mathrm{i}}{2.1}\;f^{(2)}\left(\frac{\mathrm{i}}{4}\right)\\[5pt] \oint_{|z|=1}\frac{z^{2}+z+\mathrm{i}}{(4z-\mathrm{i})^{3}}\;dz=\pi\mathrm{i}\frac{1}{32} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint_{{|z|=1}}\frac{z^{2}+z+\mathrm{i}}{(4z-\mathrm{i})^{3}}\;dz=\frac{\pi\mathrm{i}}{32}} \end{gather} \]
publicidade   

Licença Creative Commons
Fisicaexe - Exercícios Resolvidos de Física de Elcio Brandani Mondadori está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-Compartilha Igual 4.0 Internacional .