Exercício Resolvido de Fórmula Integral de Cauchy
publicidade   



a)   \( \displaystyle \oint_{{C}}\frac{z}{(z+1)(z-2)}\;dz \)



O caminho é dado pelo contorno C (Figura 1), percorrida no sentido horário. Os pontos   \( z+1=0\Rightarrow z=-1 \)   e   \( z-2=0\Rightarrow z=2 \)   estão no interior da região determinada pelo contorno, eles serão usados no cálculo da integral.
\[ \begin{gather} \oint_{C}\frac{z}{(z+1)(z-2)}\;dz \tag{I} \end{gather} \]
A integral (I) é reescrita como uma soma de duas integrais calculadas sobre os contornos C1, calculado no ponto z0 = 2, e sobre o contorno C2 calculado no ponto z0 = −1
Figura 1

\[ \begin{gather} \oint_{C}\frac{z}{(z+1)(z-2)}\;dz=\oint_{{C_{1}=2}}\frac{z}{(z+1)}\frac{1}{(z-2)}\;dz+\oint_{{C_{2}=-1}}\frac{z}{(z-2)}\frac{1}{(z+1)}\;dz \end{gather} \]
A Integral de Cauchy na forma geral é dada por
\[ \begin{gather} \bbox[#99CCFF,10px] {f^{(n)}(z_{0})=\frac{{n}!}{2\pi \mathrm{i}}\;\oint_{C}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz} \tag{II} \end{gather} \]
Identificando os termos das integrais.
\[ \begin{gather} \frac{{ \bbox[#FFCC66,2px] {n} }!}{2\pi\mathrm{i}}\;\oint_{C}\frac{ \bbox[#FFFF66,2px] {f(z)} }{\left(z-{ \bbox[#FFD9CC,2px] {z_{0}} }\right)^{{ \bbox[#FFCC66,2px] {n} }+1}}\;dz =\oint_{{C_{1}=2}} \bbox[#FFFF66,2px] {{\frac{z}{(z+1)}}} \frac{1}{(z- \bbox[#FFD9CC,2px] {2} )^{ \bbox[#FFCC66,2px] {0} +1}}\;dz+\oint_{{C_{2}=-1}} \bbox[#FFFF66,2px] {{\frac{z}{(z-2)}}} \frac{1}{(z+ \bbox[#FFD9CC,2px] {1} )^{ \bbox[#FFCC66,2px] {0} +1}}\;dz \end{gather} \]
temos   \( f_{1}(z)=\frac{z}{z+1} \),   z01 = 2 e n = 0 e   \( f_{2}(z)=\frac{z}{z-2} \),   z02 = −1 e n = 0, escrevendo a expressão (III) para cada uma das integrais
\[ \begin{gather} \oint_{C}\frac{f(z)}{\left(z-z_{0}\right)^{n+1}}\;dz=\frac{2\pi\mathrm{i}}{n!}\;f_{1}^{(n)}(z_{01})+\frac{2\pi\mathrm{i}}{n!}\;f_{2}^{(n)}(z_{02})\\[5pt] \oint_{C}\frac{z}{(z+1)(z-2)}\;dz=\frac{2\pi\mathrm{i}}{0!}\;f_{1}^{(0)}(2)+\frac{2\pi\mathrm{i}}{0!}\;f_{2}^{(0)}(-1)\\[5pt] \oint_{C}\frac{z}{(z+1)(z-2)}\;dz=\frac{2\pi\mathrm{i}}{0!}\;\left(\frac{2}{2+1}\right)+\frac{2\pi\mathrm{i}}{0!}\;\left(\frac{-1}{-1-2}\right)\\[5pt] \oint_{C}\frac{z}{(z+1)(z-2)}\;dz=2\pi\mathrm{i}\;\left(\frac{2}{3}\right)+2\pi\mathrm{i}\;\left(\frac{-1}{-3}\right)\\[5pt] \oint_{C}\frac{z}{(z+1)(z-2)}\;dz=\frac{4\pi \mathrm{i}}{3}+\frac{2\pi\mathrm{i}}{3}\\[5pt] \oint_{C}\frac{z}{(z+1)(z-2)}\;dz=\frac{6\pi\mathrm{i}}{3} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\oint_{C}\frac{z}{(z+1)(z-2)}\;dz=2\pi \mathrm{i}} \end{gather} \]

Observação 1: Não precisamos conhecer a equação que descreve o contorno C para o cálculo, basta saber se os pontos de singularidade estão dentro ou fora da região determinada pelo contorno.
Observação 2: f(0) representa o cálculo da função no ponto z0 sem derivada.
publicidade   

Licença Creative Commons
Fisicaexe - Exercícios Resolvidos de Física de Elcio Brandani Mondadori está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-Compartilha Igual 4.0 Internacional .