Exercício Resolvido de Funções Complexas
publicidade   



f)   \( \displaystyle (-3+4i)^{(1+i)} \)

Usando a expressão
\[ \bbox[#99CCFF,10px] {u^{v}=\operatorname{e}^{v\;\text{Ln}u}} \]
\[ \begin{gather} (-3+4i)^{(1+i)}=\operatorname{e}^{(1+i)\;\operatorname{Ln}(-3+4i)} \tag{I} \end{gather} \]
A função multivalente do logaritmo é dada por
\[ \begin{gather} \bbox[#99CCFF,10px] {\operatorname{Ln}z=\ln |z|+i(\operatorname{arg}(z)+2k\pi)} \tag{II} \end{gather} \]
O argumento do logaritmo é o número complexo da forma
\[ u=-3+4i \]
O módulo é dado por
\[ \bbox[#99CCFF,10px] {|z|=\sqrt{x^{2}+y^{2}}} \]
\[ \begin{gather} |u|=\sqrt{(-3)^{2}+4^{2}\;}\\ |u|=\sqrt{9+16\;}\\ |u|=\sqrt{25\;}\\ |u|=5 \tag{III} \end{gather} \]
O argumento é dado por
\[ \bbox[#99CCFF,10px] {\theta=\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)} \]
\[ \begin{align} \theta &=\operatorname{arg}(u)=\operatorname{arctg}\left(\frac{y}{x}\right)=\\ &=\operatorname{arctg}\left(\frac{4}{-3}\right)=\pi-\operatorname{arctg}\left(\frac{4}{3}\right) \tag{IV} \end{align} \]

Gráfico 1

substituindo os valores (III) e (IV) na expressão (II)
\[ \begin{gather} \operatorname{Ln}(-3+4i)=\ln \left(5\right)+i\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi \right] \tag{V} \end{gather} \]
substituindo a expressão (V) na expressão (I)
\[ \begin{gather} (-3+4i)^{(1+i)}=\operatorname{e}^{(1+i)\;\left\{\ln\left(5\right)+i\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (-3+4i)^{(1+i)}=\operatorname{e}^{\left\{\ln\left(5\right)+i\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi \right]+i\;\ln\left(5\right)+i.i\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (-3+4i)^{(1+i)}=\operatorname{e}^{\left\{\ln\left(5\right)+i\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi \right]+i\;\ln\left(5\right)+i^{2}\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (-3+4i)^{(1+i)}=\operatorname{e}^{\left\{\ln\left(5\right)+i\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi \right]+i\;\ln\left(5\right)+(-1)\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (-3+4i)^{(1+i)}=\operatorname{e}^{\left\{\ln\left(5\right)+i\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi \right]+i\;\ln\left(5\right)-\;\left[\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (-3+4i)^{(1+i)}=\operatorname{e}^{\left\{\left[\ln\left(5\right)-\pi +\operatorname{arctg}\left(\frac{4}{3}\right)-2k\pi\right]+i\;\left[\ln \left(5\right)+\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (-3+4i)^{(1+i)}=\operatorname{e}^{\left[\ln\left(5\right)-\pi +\operatorname{arctg}\left(\frac{4}{3}\right)-2k\pi\right]}+\operatorname{e}^{i\;\left[\ln\left(5\right)+\pi-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]} \end{gather} \]
Aplicando a Fórmula de Euler
\[ \bbox[#99CCFF,10px] {\operatorname{e}^{i\theta}=\cos \theta +i\operatorname{sen}\theta} \]
\[ \begin{split} (3-4i)^{(1+i)}=\operatorname{e}^{\ln(5)}.\operatorname{e}^{\operatorname{arctg}\left(\frac{4}{3}\right)+(2k+1)\pi} & \left\{\cos \left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)+\pi\right]\text{+} \right. \\ & \left. \text{+} i\operatorname{sen}\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)+\pi\right]\right\} \end{split} \]
Observação: Desenvolvendo o cosseno e o seno da soma.
\[ \cos (a+b)=\cos a\cos b-\operatorname{sen}a\operatorname{sen}b \]
\[ \begin{align} \cos\left[\underbrace{\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)}_{a}+\underbrace{\pi}_{b}\right] &=\cos \left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right]\;\underbrace{\cos\left[\pi\right]}_{-1}-\\ &-\operatorname{sen}\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right]\underbrace{\operatorname{sen}\left[\pi\right]}_{0} \end{align} \]
\[ \cos \left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)+\pi\right]=-\cos \left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right] \]
\[ \operatorname{sen}(a+b)=\operatorname{sen}a\cos b+\operatorname{sen}b\cos a \]
\[ \begin{align} \operatorname{sen}\left[\underbrace{\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)}_{a}+\underbrace{\pi}_{b}\right] &=\operatorname{sen}\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right]\;\underbrace{\cos\left[\pi \right]}_{-1}\text{+}\\ & -\underbrace{\operatorname{sen}\left[\pi\right]}_{0}\cos \left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right] \end{align} \]
\[ \operatorname{sen}\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)+\pi\right]=-\operatorname{sen}\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right] \]
\[ \begin{split} (3-4i)^{(1+i)}=5\operatorname{e}^{\operatorname{arctg}\left(\frac{4}{3}\right)+(2k+1)\pi} &\left\{-\cos \left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right]- \right. \\ & \left. -i\operatorname{sen}\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right]\right\} \end{split} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] { \begin{split} (3-4i)^{(1+i)}=-5\operatorname{e}^{\operatorname{arctg}\left(\frac{4}{3}\right)+(2k+1)\pi} & \left\{\cos \left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right]\text{+} \right. \\ & \left. \text{+} i\operatorname{sen}\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right]\right\} \end{split} } \end{gather} \]
publicidade   

Licença Creative Commons
Fisicaexe - Exercícios Resolvidos de Física de Elcio Brandani Mondadori está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-Compartilha Igual 4.0 Internacional .