Exercício Resolvido de Funções Complexas
publicidade   



e)   \( \displaystyle (3-4i)^{(1+i)} \)

Usando a expressão
\[ \bbox[#99CCFF,10px] {u^{v}=\operatorname{e}^{v\;\text{Ln}u}} \]
\[ \begin{gather} (3-4i)^{(1+i)}=\operatorname{e}^{(1+i)\;\operatorname{Ln}(3-4i)} \tag{I} \end{gather} \]
A função multivalente do logaritmo é dada por
\[ \begin{gather} \bbox[#99CCFF,10px] {\operatorname{Ln}z=\ln |z|+i(\operatorname{arg}(z)+2k\pi)} \tag{II} \end{gather} \]
O argumento do logaritmo é o número complexo da forma
\[ u=3-4i \]
O módulo é dado por
\[ \bbox[#99CCFF,10px] {|z|=\sqrt{x^{2}+y^{2}}} \]
\[ \begin{gather} |u|=\sqrt{3^{2}+(-4)^{2}\;}\\ |u|=\sqrt{9+16\;}\\ |u|=\sqrt{25\;}\\ |u|=5 \tag{III} \end{gather} \]
O argumento é dado por
\[ \bbox[#99CCFF,10px] {\theta=\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)} \]
\[ \begin{align} \theta &=\operatorname{arg}(u)=\operatorname{arctg}\left(\frac{y}{x}\right)=\\ &=\operatorname{arctg}\left(\frac{-4}{3}\right)=-\operatorname{arctg}\left(\frac{4}{3}\right) \tag{IV} \end{align} \]

Gráfico 1

substituindo os valores (III) e (IV) na expressão (II)
\[ \begin{gather} \operatorname{Ln}(3-4i)=\ln\left(5\right)+i\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right] \tag{V} \end{gather} \]
substituindo a expressão (V) na expressão (I)
\[ \begin{gather} (3-4i)^{(1+i)}=\operatorname{e}^{(1+i)\;\left\{\ln\left(5\right)+i\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (3-4i)^{(1+i)}=\operatorname{e}^{\left\{\ln\left(5\right)+i\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]+i\;\ln\left(5\right)+i.i\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (3-4i)^{(1+i)}=\operatorname{e}^{\left\{\ln\left(5\right)+i\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]+i\;\ln\left(5\right)+i^{2}\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (3-4i)^{(1+i)}=\operatorname{e}^{\left\{\ln\left(5\right)+i\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]+i\;\ln\left(5\right)+(-1)\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (3-4i)^{(1+i)}=\operatorname{e}^{\left\{\ln\left(5\right)+i\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]+i\;\ln\left(5\right)-\;\left[-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (3-4i)^{(1+i)}=\operatorname{e}^{\left\{\left[\ln\left(5\right)+\operatorname{arctg}\left(\frac{4}{3}\right)-2k\pi\right]+i\;\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}} \end{gather} \]
\[ \begin{gathered} \qquad \qquad \quad (3-4i)^{(1+i)}=\operatorname{e}^{\left\{\left[\ln\left(5\right)+\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]+i\;\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\quad ,\quad k\in \mathbb{Z} \end{gathered} \]
\[ \begin{gather} (3-4i)^{(1+i)}=\operatorname{e}^{\left\{\left[\ln\left(5\right)+\operatorname{arctg}\left(\frac{4}{3}\right)-2k\pi\right]+i\;\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]\right\}}\\[5pt] (3-4i)^{(1+i)}=\operatorname{e}^{\ln\left(5\right)}.\operatorname{e}^{\operatorname{arctg}\left(\frac{4}{3}\right)-2k\pi}.\operatorname{e}^{i\;\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]}\\[5pt] (3-4i)^{(1+i)}=5\operatorname{e}^{\operatorname{arctg}\left(\frac{4}{3}\right)-2k\pi}.\operatorname{e}^{i\;\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)+2k\pi\right]} \end{gather} \]
Aplicando a Fórmula de Euler
\[ \bbox[#99CCFF,10px] {\operatorname{e}^{i\theta}=\cos \theta +i\operatorname{sen}\theta} \]
\[ \bbox[#FFCCCC,10px] {(3-4i)^{(1+i)}=5\operatorname{e}^{\operatorname{arctg}\left(\frac{4}{3}\right)-2k\pi}\left\{\cos \left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right]+i\operatorname{sen}\left[\ln\left(5\right)-\operatorname{arctg}\left(\frac{4}{3}\right)\right]\right\}} \]
publicidade   

Licença Creative Commons
Fisicaexe - Exercícios Resolvidos de Física de Elcio Brandani Mondadori está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-Compartilha Igual 4.0 Internacional .