f)
\( \operatorname{Arctgh}z \quad , \quad z_{0}=1-i \)
Queremos calcular
\[
\begin{gather}
w=\operatorname{Arctgh}z \tag{I}
\end{gather}
\]
podemos escrever
\[
\begin{gather}
\operatorname{tgh}w=z \tag{II}
\end{gather}
\]
A tangente hiperbólica é dada por
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\operatorname{tgh}w=\frac{\operatorname{e}^{w}-\operatorname{e}^{-w}}{\operatorname{e}^{w}+\operatorname{e}^{-w}}} \tag{III}
\end{gather}
\]
substituindo a expressão (III) na expressão (II)
\[
\begin{gathered}
z=\frac{\operatorname{e}^{w}-\operatorname{e}^{-w}}{\operatorname{e}^{w}+\operatorname{e}^{-w}}\\
z(\operatorname{e}^{w}+\operatorname{e}^{-w})=\operatorname{e}^{w}-\operatorname{e}^{-w}\\
z\operatorname{e}^{w}+z\operatorname{e}^{-w}-\operatorname{e}^{w}+\operatorname{e}^{-w}=0
\end{gathered}
\]
multiplicando toda a equação por e
iw
\[
\begin{gathered}
\qquad \qquad \quad (z-1)\operatorname{e}^{w}+(z+1)\operatorname{e}^{-w}=0\qquad (\times\operatorname{e}^{w})\\
(z-1)\operatorname{e}^{w}.e^{w}+(z+1)\operatorname{e}^{-w}.e^{w}=0\\
(z-1)\operatorname{e}^{2w}+(z+1)=0
\end{gathered}
\]
fazendo a mudança de variável
\[
\begin{gather}
\lambda =\operatorname{e}^{2w} \tag{IV}\\[10pt]
(z-1)\lambda+(z+1)=0\\
\lambda =\frac{-(1+z)}{-(1-z)}\\
\lambda=\frac{1+z}{1-z}
\end{gather}
\]
substituindo este valor de λ na expressão (IV)
\[
\begin{gather}
\frac{1+z}{1-z}=\operatorname{e}^{2w}\\
w=\frac{1}{2}\;\operatorname{Ln}\frac{1+z}{1-z}\\
w=\frac{1}{2}\;\operatorname{Ln}\frac{1+z}{1-z} \tag{V}
\end{gather}
\]
substituindo as expressão (V) na expressão (I)
\[ \bbox[#FFCCCC,10px]
{\operatorname{Arctgh}z=\frac{1}{2}\;\operatorname{Ln}\frac{1+z}{1-z}}
\]
Para
\( z_{0}=1-i \)
\[
\begin{gather}
\operatorname{Arctgh}(1-i)=\frac{1}{2}\;\operatorname{Ln}\frac{1+(1-i)}{1-(1-i)}\\
\operatorname{Arctgh}(1-i)=\frac{1}{2}\;\operatorname{Ln}\frac{1+1-i}{1-1+i}\\
\operatorname{Arctgh}(1-i)=\frac{1}{2}\;\operatorname{Ln}\frac{(2-i)}{i}.\frac{i}{i}\\
\operatorname{Arctgh}(1-i)=\frac{1}{2}\;\operatorname{Ln}\frac{2i-i^{2}}{i^{2}}\\
\operatorname{Arctgh}(1-i)=\frac{1}{2}\;\operatorname{Ln}\frac{2i-(-1)}{(-1)}\\
\operatorname{Arctgh}(1-i)=\frac{1}{2}\;\operatorname{Ln}(-2i-1) \tag{VI}
\end{gather}
\]
A função multivalente do logaritmo é dada por
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\operatorname{Ln}z=\ln |z|+i\;\left(\operatorname{arg}(z)+2k\pi \right)} \tag{VII}
\end{gather}
\]
O argumento do logaritmo é o número complexo da forma
\[
z=-1-2i
\]
O módulo é dado por
\[ \bbox[#99CCFF,10px]
{|z|=\sqrt{x^{2}+y^{2}}}
\]
\[
\begin{gather}
|z|=\sqrt{(-1)^{2}+2^{2}\;}\\
|z|=\sqrt{5} \tag{VIII}
\end{gather}
\]
O argumento é dado por
\[ \bbox[#99CCFF,10px]
{\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)}
\]
\[
\begin{gather}
\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)=\operatorname{arctg}\left(\frac{-2}{-1}\right)=\operatorname{arctg}(2)\tag{IX}
\end{gather}
\]
substituindo os valores (VIII) e (IX) na expressão (VII)
\[
\begin{gather}
\operatorname{Ln}\left(-1-2i\right)=\ln\left(\sqrt{5}\right)+i(\operatorname{arctg}(2)+2k\pi) \tag{X}
\end{gather}
\]
substituindo a expressão (X) na expressão (VI)
\[
\begin{gathered}
\operatorname{Arctgh}\left(1-i\right)=\frac{1}{2}\;\left[\ln\left(\sqrt{5}\right)+i(\operatorname{arctg}(2)+2k\pi)\right]\\
\operatorname{Arctgh}\left(1-i\right)=\frac{1}{2}\ln\left(5^{1/2}\right)+i\frac{1}{2}(\operatorname{arctg}(2)+2k\pi)\\
\operatorname{Arctgh}\left(1-i\right)=\frac{1}{2}.\frac{1}{2}\ln\left(5\right)+i\frac{1}{2}\operatorname{arctg}(2)+i\frac{1}{\cancel{2}}.\cancel{2}k\pi
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{\operatorname{Arctgh}\left(1-i\right)=\frac{1}{4}\ln\left(5\right)+\frac{i}{2}\operatorname{arctg}(2)+k\pi i}
\]