g)
\( \text{Ln}(1+i\sqrt{3}) \)
O logaritmo é dado por
\[ \bbox[#99CCFF,10px]
{\text{Ln}(z)=\ln |z|+i(\operatorname{arg}(z)+2k\pi )}
\]
O módulo é dado por
\[ \bbox[#99CCFF,10px]
{|z|=\sqrt{x^{2}+y^{2}}}
\]
\[
\begin{gathered}
z=1+i\sqrt{3}\\[5pt]
|z|=\sqrt{1^{2}+\left(\sqrt{3}\right)^{2}\;}\\
|z|=\sqrt{1+3\;}\\|z|=\sqrt{4\;}\\
|z|=2
\end{gathered}
\]
O argumento é dado por
\[ \bbox[#99CCFF,10px]
{\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)}
\]
\[
\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)
\]
\[
\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{\sqrt{3\;}}{1}\right)=\operatorname{arctg}\left(\sqrt{3\;}\right)=\frac{\pi}{3}
\]
\[ \bbox[#FFCCCC,10px]
{\text{Ln}\left(1+i\sqrt{3}\right)=\ln (2)+i\left(\frac{\pi }{3}+2k\pi\right)}
\]