Exercício Resolvido de Funções Complexas
publicidade   



c) \( \operatorname{senh}(-2+i) \)

O seno hiperbólico é dado por
\[ \bbox[#99CCFF,10px] {\operatorname{senh}z=\frac{\operatorname{e}^{z}-\operatorname{e}^{-z}}{2}} \]
\[ \begin{align} \operatorname{senh}(-2+i) &=\frac{\operatorname{e}^{(-2+i)}-\operatorname{e}^{-(-2+i)}}{2}=\frac{\operatorname{e}^{-2}.\operatorname{e}^{i}-\operatorname{e}^{2}.\operatorname{e}^{-i}}{2}=\\ &=\frac{1}{2}\left(\operatorname{e}^{-2}.\operatorname{e}^{i}-\operatorname{e}^{2}.\operatorname{e}^{-i}\right) \end{align} \]
aplicando a fórmula de De Moivre
\[ \bbox[#99CCFF,10px] {\operatorname{e}^{i\theta }=\cos \theta +i\operatorname{sen}\theta} \]
\[ \begin{align} \operatorname{senh}(-2+i) &=\frac{1}{2}\left[\operatorname{e}^{-2}(\cos1+i\operatorname{sen}1)-\operatorname{e}^{2}(\cos1-i\operatorname{sen}1)\right]\text{=}\\ &=\frac{1}{2}\left[\operatorname{e}^{-2}\cos1+i\operatorname{e}^{-2}\operatorname{sen}1-\operatorname{e}^{2}\cos1+i\operatorname{e}^{2}\operatorname{sen}1\right]=\\ &=\frac{1}{2}(\operatorname{e}^{-2}-\operatorname{e}^{2})\cos1+i\frac{1}{2}(\operatorname{e}^{-2}+i\operatorname{e}^{2})\operatorname{sen}1 =\\ &=\frac{\operatorname{e}^{-2}-\operatorname{e}^{2}}{2}\cos1+i\frac{\operatorname{e}^{-2}+\operatorname{e}^{2}}{2}\operatorname{sen}1=\\ &=-\frac{\operatorname{e}^{2}-\operatorname{e}^{-2}}{2}\cos1+i\frac{\operatorname{e}^{2}+\operatorname{e}^{-2}}{2}\operatorname{sen}1 \end{align} \]
O cosseno hiperbólico e o seno hiperbólico são dados por
\[ \bbox[#99CCFF,10px] {\cosh z=\frac{\operatorname{e}^{z}+\operatorname{e}^{-z}}{2}} \]
\[ \bbox[#99CCFF,10px] {\operatorname{senh}z=\frac{\operatorname{e}^{z}-\operatorname{e}^{-z}}{2}} \]
\[ \bbox[#FFCCCC,10px] {\operatorname{senh}(-2+i)=-\operatorname{senh}2\cos 1+i\cosh2\operatorname{sen}1} \]
publicidade   

Licença Creative Commons
Fisicaexe - Exercícios Resolvidos de Física de Elcio Brandani Mondadori está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-Compartilha Igual 4.0 Internacional .