Exercício Resolvido de Funções Complexas
b)
\( \cosh i \)
O cosseno hiperbólico é dado por
\[ \bbox[#99CCFF,10px]
{\cosh z=\frac{\operatorname{e}^{z}+\operatorname{e}^{-z}}{2}}
\]
\[
\cosh i=\frac{\operatorname{e}^{i}+\operatorname{e}^{-i}}{2}=\frac{1}{2}\left(\operatorname{e}^{i}+\operatorname{e}^{-i}\right)
\]
aplicando a
fórmula de De Moivre
\[ \bbox[#99CCFF,10px]
{\operatorname{e}^{i\theta }=\cos \theta +i\operatorname{sen}\theta}
\]
\[
\begin{align}
\cosh i &=\frac{1}{2}\left[(\cos1+i\operatorname{sen}1)+(\cos1-i\operatorname{sen}1)\right]=\\
&=\frac{1}{2}\left[\cos1+i\operatorname{sen}1+\cos1-i\operatorname{sen}1\right]=\\
&=\frac{1}{\cancel{2}}.\cancel{2}\cos1
\end{align}
\]
\[ \bbox[#FFCCCC,10px]
{\cosh i=\cos 1}
\]