a)
\( \cos (1+i) \)
O cosseno é dado por
\[ \bbox[#99CCFF,10px]
{\cos z=\frac{\operatorname{e}^{iz}+\operatorname{e}^{-iz}}{2}}
\]
\[
\begin{align}
\cos(1+i) &=\frac{\operatorname{e}^{i.(1+i)}+\operatorname{e}^{-i.(1+i)}}{2}=\frac{\operatorname{e}^{i}.\operatorname{e}^{i^{2}}+\operatorname{e}^{-i}.\operatorname{e}^{-i^{2}}}{2}=\\
&=\frac{1}{2}\left(\operatorname{e}^{i}.\operatorname{e}^{-1}+\operatorname{e}^{-i}.\operatorname{e}^{1}\right)
\end{align}
\]
aplicando a
fórmula de De Moivre
\[ \bbox[#99CCFF,10px]
{\operatorname{e}^{i\theta }=\cos \theta +i\operatorname{sen}\theta}
\]
\[
\begin{align}
\cos (1+i) &=\frac{1}{2}\left[(\cos1+i\operatorname{sen}1).\operatorname{e}^{-1}+(\cos1-i\operatorname{sen}1).\operatorname{e}^{1}\right]=\\
&=\frac{1}{2}\left[\operatorname{e}^{-1}\cos1+i\operatorname{e}^{-1}\operatorname{sen}1+\operatorname{e}^{1}\cos1-i\operatorname{e}^{1}\operatorname{sen}1\right]=\\
&=\frac{1}{2}(\operatorname{e}^{-1}+\operatorname{e}^{1})\cos1-i\frac{1}{2}(\operatorname{e}^{1}-\operatorname{e}^{-1})\operatorname{sen}1=\\
&=\frac{\operatorname{e}^{-1}+\operatorname{e}^{1}}{2}\cos1-i\frac{\operatorname{e}^{1}-\operatorname{e}^{-1}}{2}\operatorname{sen}1
\end{align}
\]
O cosseno hiperbólico e o seno hiperbólico são dados por
\[ \bbox[#99CCFF,10px]
{\cosh z=\frac{\operatorname{e}^{z}+\operatorname{e}^{-z}}{2}}
\]
\[ \bbox[#99CCFF,10px]
{\operatorname{senh}z=\frac{\operatorname{e}^{z}-\operatorname{e}^{-z}}{2}}
\]
\[ \bbox[#FFCCCC,10px]
{\cos (1+i)=\cosh 1\cos 1-i\operatorname{senh}1\operatorname{sen}1}
\]