d)
\( \operatorname{tg}{iz}=i\operatorname{tgh}z \)
Tangente é dada por
\[ \bbox[#99CCFF,10px]
{\operatorname{tg}z=\frac{\operatorname{sen}z}{\cos z}}
\]
Seno e cosseno são dados por
\[ \bbox[#99CCFF,10px]
{\operatorname{sen}z=\frac{\operatorname{e}^{iz}-\operatorname{e}^{-iz}}{2i}}
\]
\[ \bbox[#99CCFF,10px]
{\cos z=\frac{\operatorname{e}^{iz}+\operatorname{e}^{-iz}}{2}}
\]
\[
\begin{align}
\operatorname{tg}z &=\frac{\frac{\operatorname{e}^{iz}-\operatorname{e}^{-iz}}{2i}}{\frac{\operatorname{e}^{iz}+\operatorname{e}^{-iz}}{2}}=\frac{\operatorname{e}^{iz}-\operatorname{e}^{-iz}}{2i}.\frac{2}{\operatorname{e}^{iz}+\operatorname{e}^{-iz}}.\frac{i}{i}=\\
&=i\frac{\operatorname{e}^{iz}-\operatorname{e}^{-iz}}{2i^{2}}.\frac{2}{\operatorname{e}^{iz}+\operatorname{e}^{-iz}}=-i\frac{\operatorname{e}^{iz}-\operatorname{e}^{-iz}}{\operatorname{e}^{iz}+\operatorname{e}^{-iz}}
\end{align}
\]
usando a última expressão para o cálculo da tangente
\[
\begin{align}
\operatorname{tg}iz &=-i\frac{\operatorname{e}^{i(iz)}-\operatorname{e}^{-i(iz)}}{\operatorname{e}^{i(iz)}+\operatorname{e}^{-i(iz)}}=-i\frac{\operatorname{e}^{i^{2}z}-\operatorname{e}^{-i^{2}z}}{\operatorname{e}^{i^{2}z}+\operatorname{e}^{-i^{2}z}}=-i\frac{\operatorname{e}^{-z}-\operatorname{e}^{-(-1)z}}{\operatorname{e}^{-z}+\operatorname{e}^{-(-1)z}}=\\
&=-i\frac{-(\operatorname{e}^{z}-\operatorname{e}^{-z})}{\operatorname{e}^{z}+\operatorname{e}^{-z}}.\frac{2}{2}=i\frac{\frac{\operatorname{e}^{z}-\operatorname{e}^{-z}}{2}}{\frac{\operatorname{e}^{z}+\operatorname{e}^{-z}}{2}}=i\frac{\operatorname{senh}z}{\cosh z}
\end{align}
\]
\[ \bbox[#FFCCCC,10px]
{\operatorname{tg}{iz}=i\operatorname{tgh}z}
\]