Exercício Resolvido de Funções Complexas
b)
\( \operatorname{sen}{iz}=i\operatorname{senh}z \)
Seno é dado por
\[ \bbox[#99CCFF,10px]
{\operatorname{sen}z=\frac{\operatorname{e}^{iz}-\operatorname{e}^{-iz}}{2i}}
\]
\[
\begin{align}
\operatorname{sen}iz &=\frac{\operatorname{e}^{i.iz}-\operatorname{e}^{-i.iz}}{2i}=\frac{\operatorname{e}^{i^{2}z}-\operatorname{e}^{-i^{2}z}}{2i}=\frac{\operatorname{e}^{-z}-\operatorname{e}^{-(-z)}}{2i}.\frac{i}{i}\text{=}\\
&=i\frac{\operatorname{e}^{-z}-\operatorname{e}^{z}}{2i^{2}}=-i\frac{\operatorname{e}^{z}-\operatorname{e}^{-z}}{-2}=i\frac{\operatorname{e}^{z}-\operatorname{e}^{-z}}{2}
\end{align}
\]
\[ \bbox[#FFCCCC,10px]
{\operatorname{sen}iz=i\operatorname{senh}z}
\]