b)
\( \left(1+i\sqrt{3}\right)^{1/2} \)
As raízes de um número complexo são dadas por
\[ \bbox[#99CCFF,10px]
{z=\sqrt[{n}]{r}\left(\cos \frac{\theta +2k\pi}{n}+i\operatorname{sen}\frac{\theta +2k\pi }{n}\right)}
\]
\[
\begin{gather}
x+iy=1+i\sqrt{3}\\[5pt]
r=\sqrt{1^{2}+\left(\sqrt{3}\right)^{2}\;}=\sqrt{4\;}=2
\end{gather}
\]
\[
\begin{gather}
\theta=\operatorname{arctg}\left(\frac{\sqrt{3}}{1}\right)=\operatorname{arctg}\left(\sqrt{3}\right)=\frac{\pi}{3}
\end{gather}
\]
Para a raiz quadrada,
n=2 e
k=0, 1.
Para
k=0:
\[
\begin{gathered}
z_{1}=\sqrt{2}\left(\cos \frac{\frac{\pi }{3}+2.0\pi}{2}+i\operatorname{sen}\frac{\frac{\pi }{3}+2.0\pi}{2}\right)\\
z_{1}=\sqrt{2}\left(\cos \frac{\pi}{6}+i\operatorname{sen}\frac{\pi}{6}\right)\\
z_{1}=\sqrt{2}\left(\frac{\sqrt{3}}{2}+i\frac{1}{2}\right)
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{z_{1}=\frac{\sqrt{6}}{2}+i\frac{\sqrt{2}}{2}}
\]
Para
k=1:
\[
\begin{gathered}
z_{2}=\sqrt{2}\left(\cos \frac{\frac{\pi }{3}+2.1\pi}{2}+i\operatorname{sen}\frac{\frac{\pi }{3}+2.1\pi}{2}\right)\\
z_{2}=\sqrt{2}\left(\cos \frac{\frac{\pi +6\pi}{3}}{2}+i\operatorname{sen}\frac{\frac{\pi +6\pi}{3}}{2}\right)\\
z_{2}=\sqrt{2}\left(\cos \frac{7\pi}{6}+i\operatorname{sen}\frac{7\pi}{6}\right)\\
z_{2}=\sqrt{2}\left(-{\frac{\sqrt{3}}{2}}-i\frac{1}{2}\right)
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{z_{2}=-{\frac{\sqrt{6}}{2}}-i\frac{\sqrt{2}}{2}}
\]