a)
\( \sqrt{-4\;} \)
As raízes de um número complexo são dadas por
\[ \bbox[#99CCFF,10px]
{z=\sqrt[{n}]{r}\left(\cos \frac{\theta +2k\pi}{n}+i\operatorname{sen}\frac{\theta +2k\pi }{n}\right)}
\]
\[
\begin{gather}
x+iy=-4+0i\\[5pt]
r=\sqrt{(-4)^{2}+0^{2}\;}=\sqrt{16\;}=4
\end{gather}
\]
\[
\begin{gather}
\theta=\operatorname{arctg}\left(\frac{y}{x}\right)=\operatorname{arctg}\left(\frac{0}{-4}\right)=\operatorname{arctg}0=\pi
\end{gather}
\]
Para a raiz quadrada,
n=2 e
k=0, 1.
Para
k=0:
\[
\begin{gathered}
z_{1}=\sqrt{4}\left(\cos \frac{\pi +2.0\pi}{2}+i\operatorname{sen}\frac{\pi +2.0\pi}{2}\right)\\
z_{1}=2\left(\cos \frac{\pi}{2}+i\operatorname{sen}\frac{\pi}{2}\right)\\
z_{1}=2\left(0+i1\right)
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{z_{1}=2i}
\]
Para
k=1:
\[
\begin{gathered}
z_{2}=\sqrt{4}\left(\cos \frac{\pi +2.1\pi}{2}+i\operatorname{sen}\frac{\pi +2.1\pi}{2}\right)\\
z_{2}=2\left(\cos \frac{\pi +2\pi}{2}+i\operatorname{sen}\frac{\pi +2\pi }{2}\right)\\
z_{2}=2\left(\cos\frac{3\pi }{2}+i\operatorname{sen}\frac{3\pi}{2}\right)\\
z_{2}=2\left(0-i1\right)
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{z_{2}=-2i}
\]