b)
\( z_{1}=1+i \) ,
\( z_{2}=\sqrt{3}+i \)
O módulo é dado por
\[ \bbox[#99CCFF,10px]
{|z|=\sqrt{x^{2}+y^{2}}}
\]
\[
\begin{gathered}
|z_{1}|=\sqrt{1^{2}+1^{2}}\\
|z_{1}|=\sqrt{1+1}\\
|z_{1}|=\sqrt{2}
\end{gathered}
\]
\[
\begin{gathered}
|z_{2}|=\sqrt{\left(\sqrt{3}\right)^{2}+1^{2}}\;\\
|z_{2}|=\sqrt{3+1}\\
|z_{2}|=\sqrt{4}\\
|z_{2}|=2
\end{gathered}
\]
O argumento é dado por
\[ \bbox[#99CCFF,10px]
{\theta=\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)}
\]
\[
\begin{gathered}
\theta_{1}=\operatorname{arctg}\left(\frac{1}{1}\right)\\
\theta_{1}=\operatorname{arctg}\left(1\right)\\
\theta _{1}=\frac{\pi}{4}
\end{gathered}
\]
\[
\begin{gathered}
\theta_{2}=\operatorname{arctg}\left(\frac{1}{\sqrt{3}}\right)\\
\theta_{2}=\operatorname{arctg}\left(\frac{1}{\sqrt{3}}.\frac{\sqrt{3}}{\sqrt{3}}\right)\\
\theta_{2}=\operatorname{arctg}\left(\frac{\sqrt{3}}{3}\right)\\
\theta_{2}=\frac{\pi }{6}
\end{gathered}
\]
Escrevendo
z na forma polar
\[ \bbox[#99CCFF,10px]
{z=r(\cos \theta +i\operatorname{sen}\theta )\ \ ,\ r=|z|}
\]
\[ \bbox[#FFCCCC,10px]
{z_{1}=\sqrt{2}\;\left(\cos \frac{\pi }{4}+i\operatorname{sen}\frac{\pi}{4}\right)}
\]
\[ \bbox[#FFCCCC,10px]
{z_{2}=2\;\left(\cos \frac{\pi }{6}+i\operatorname{sen}\frac{\pi}{6}\right)}
\]
A multicação de números complexos na forma polar é dada por
\[ \bbox[#99CCFF,10px]
{z_{1}z_{2}=r_{1}r_{2}[\cos (\theta _{1}+\theta_{2})+i\operatorname{sen}(\theta_{1}+\theta _{2})]}
\]
\[
\begin{gathered}
z_{1}z_{2}=\sqrt{2}.2.\left[\cos \left(\frac{\pi}{4}+\frac{\pi }{6}\right)+i\operatorname{sen}\left(\frac{\pi}{4}+\frac{\pi }{6}\right)\right]\\
z_{1}z_{2}=2\sqrt{2}\;\left[\cos\left(\frac{3\pi +2\pi }{12}\right)+i\operatorname{sen}\left(\frac{3\pi+2\pi }{12}\right)\right]
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{z_{1}z_{2}=2\sqrt{2}\;\left(\cos \frac{5\pi}{12}+i\operatorname{sen}\frac{5\pi}{12}\right)}
\]
A divisão de números complexos na forma polar é dada por
\[ \bbox[#99CCFF,10px]
{\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}[\cos (\theta _{1}-\theta_{2})+i\operatorname{sen}(\theta _{1}-\theta _{2})]}
\]
\[
\begin{gathered}
\frac{z_{1}}{z_{2}}=\frac{\sqrt{2}}{2}\;\left[\cos\left(\frac{\pi }{4}-\frac{\pi}{6}\right)+i\operatorname{sen}\left(\frac{\pi }{4}-\frac{\pi}{6}\right)\right]\\
\frac{z_{1}}{z_{2}}=\frac{\sqrt{2}}{2}\;\left[\cos\left(\frac{3\pi -2\pi }{12}\right)+i\operatorname{sen}\left(\frac{3\pi-2\pi }{12}\right)\right]
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{\frac{z_{1}}{z_{2}}=\frac{\sqrt{2}}{2}\;\left[\cos \frac{\pi}{12}+i\operatorname{sen}\frac{\pi }{12}\right]}
\]