a)
\( z_{1}=\sqrt{3}+3i \) ,
\( z_{2}=\dfrac{3-i\sqrt{3}}{2} \)
O módulo é dado por
\[ \bbox[#99CCFF,10px]
{|z|=\sqrt{x^{2}+y^{2}}}
\]
\[
\begin{gathered}
|z_{1}|=\sqrt{\left(\sqrt{3}\right)^{2}+3^{2}}\\
|z_{1}|=\sqrt{3+9}\\
|z_{1}|=\sqrt{12}\\
|z_{1}|=\sqrt{3.2^{2}}\\
|z_{1}|=2\sqrt{3}
\end{gathered}
\]
\[
\begin{gathered}
|z_{2}|=\sqrt{\left(\frac{3}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\\
|z_{2}|=\sqrt{\frac{9}{4}+\frac{3}{4}}\\
|z_{2}|=\sqrt{\frac{12}{4}}\\
|z_{2}|=\sqrt{3}
\end{gathered}
\]
O argumento é dado por
\[ \bbox[#99CCFF,10px]
{\theta=\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)}
\]
\[
\begin{gathered}
\theta_{1}=\operatorname{arctg}\left(\frac{3}{\sqrt{3}}.\frac{\sqrt{3}}{\sqrt{3}}\right)\\
\theta_{1}=\operatorname{arctg}\left(\frac{3\sqrt{3}}{3}\right)\\
\theta_{1}=\operatorname{arctg}\left(\sqrt{3}\right)\\
\theta _{1}=\frac{\pi}{3}
\end{gathered}
\]
\[
\begin{gathered}
\theta_{2}=\operatorname{arctg}\left(\frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}}\right)\\
\theta_{2}=\operatorname{arctg}\left(\frac{\sqrt{3}}{2}.\frac{2}{3}\right)\\
\theta_{2}=\operatorname{arctg}\left(\frac{\sqrt{3}}{3}\right)\\
\theta_{2}=-{\frac{\pi }{6}}
\end{gathered}
\]
Escrevendo
z na forma polar
\[ \bbox[#99CCFF,10px]
{z=r(\cos \theta +i\operatorname{sen}\theta )\ \ ,\ r=|z|}
\]
\[ \bbox[#FFCCCC,10px]
{z_{1}=2\sqrt{3}\;\left(\cos \frac{\pi }{3}+i\operatorname{sen}\frac{\pi}{3}\right)}
\]
\[
z_{2}=\sqrt{3}\;\left[\cos \left(-{\frac{\pi}{6}}\right)+i\operatorname{sen}\left(-{\frac{\pi }{6}}\right)\right]
\]
Como cosseno é uma função par
\( \cos \left(-{\frac{\pi }{6}}\right)=\cos \left(\frac{\pi }{6}\right) \),
e como seno é uma função ímpar
\( \operatorname{sen}\left(-{\frac{\pi}{6}}\right)=-\operatorname{sen}\left(\frac{\pi }{6}\right) \)
\[ \bbox[#FFCCCC,10px]
{z_{2}=\sqrt{3}\;\left(\cos \frac{\pi }{6}-i\operatorname{sen}\frac{\pi}{6}\right)}
\]
A multicação de números complexos na forma polar é dada por
\[ \bbox[#99CCFF,10px]
{z_{1}z_{2}=r_{1}r_{2}[\cos (\theta _{1}+\theta_{2})+i\operatorname{sen}(\theta_{1}+\theta _{2})]}
\]
\[
\begin{gathered}
z_{1}z_{2}=2.\sqrt{3}.\sqrt{3}.\left[\cos\left(\frac{\pi }{3}-\frac{\pi}{6}\right)+i\operatorname{sen}\left(\frac{\pi }{3}-\frac{\pi}{6}\right)\right]\\
z_{1}z_{2}=6.\left[\cos \left(\frac{2\pi -\pi}{6}\right)+i\operatorname{sen}\left(\frac{2\pi -\pi}{6}\right)\right]\\
z_{1}z_{2}=6.\left[\cos \left(\frac{\pi}{6}\right)+i\operatorname{sen}\left(\frac{\pi}{6}\right)\right]
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{z_{1}z_{2}=6\left(\cos \frac{\pi }{6}+i\operatorname{sen}\frac{\pi}{6}\right)}
\]
A divisão de números complexos na forma polar é dada por
\[ \bbox[#99CCFF,10px]
{\frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}}[\cos (\theta _{1}-\theta_{2})+i\operatorname{sen}(\theta _{1}-\theta _{2})]}
\]
\[
\begin{gathered}
\frac{z_{1}}{z_{2}}=\frac{2\sqrt{3}}{\sqrt{3}}.\left[\cos\left(\frac{\pi }{3}-\left(\frac{-{\pi}}{6}\right)\right)+i\operatorname{sen}\left(\frac{\pi}{3}-\left(\frac{-{\pi}}{6}\right)\right)\right]\\
\frac{z_{1}}{z_{2}}=2\left[\cos\left(\frac{\pi }{3}+\frac{\pi}{6}\right)+i\operatorname{sen}\left(\frac{\pi }{3}+\frac{\pi}{6}\right)\right]\\
\frac{z_{1}}{z_{2}}=2.\left[\cos \left(\frac{2\pi+\pi }{6}\right)+i\operatorname{sen}\left(\frac{2\pi +\pi}{6}\right)\right]\\
\frac{z_{1}}{z_{2}}=2.\left[\cos \frac{3\pi}{6}+i\operatorname{sen}\frac{3\pi}{6}\right]
\end{gathered}
\]
\[ \bbox[#FFCCCC,10px]
{\frac{z_{1}}{z_{2}}=2\left[\cos \frac{\pi}{2}+i\operatorname{sen}\frac{\pi }{2}\right]}
\]