e)
\( \displaystyle z=\frac{1}{-1-i\sqrt{3}} \)
Multiplicando o numerador e o denominador pelo complexo conjugado do denominador
\( \left(\overline{{z}}=-1+i\sqrt{3}\right) \)
\[
\begin{gather}
z=\frac{1}{(-1-i\sqrt{3})}.\frac{(-1+i\sqrt{3})}{(-1+i\sqrt{3})}\\[5pt]
z=\frac{-1+i\sqrt{3}}{(-1).(-1)-1.i\sqrt{3}-i\sqrt{3}.(-1)-(i\sqrt{3}).(i\sqrt{3})}\\[5pt]
z=\frac{-1+i\sqrt{3}}{(-1)^{2}-i\sqrt{3}+i\sqrt{3}-i^{2}(\sqrt{3})^{2}}
\end{gather}
\]
sendo
\( i^{2}=-1 \)
\[
\begin{gather}
z=\frac{-1+i\sqrt{3}}{1-(-1).3}\\[5pt]
z=\frac{-1+i\sqrt{3}}{1+3}\\[5pt]
z=-{\frac{1}{4}}+i\frac{\sqrt{3}}{4}
\end{gather}
\]
O módulo é dado por
\[ \bbox[#99CCFF,10px]
{|z|=\sqrt{x^{2}+y^{2}}}
\]
\[
\begin{gather}
|z|=\sqrt{\left(-{\frac{1}{4}}\right)^{2}+\left(-{\frac{\sqrt{3}}{4}}\right)^{2}}\\[5pt]
|z|=\sqrt{\frac{1}{16}+\frac{3}{16}}\\[5pt]
|z|=\sqrt{\frac{4}{16}}\\[5pt]
|z|=\frac{2}{4}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{|z|=\frac{1}{2}}
\]
O argumento é dado por
\[ \bbox[#99CCFF,10px]
{\theta=\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)}
\]
\[
\begin{gather}
\theta=\operatorname{arctg}\left[\frac{\dfrac{\sqrt{3}}{4}}{\left(-{\dfrac{1}{4}}\right)}\right]\\
\theta=\operatorname{arctg}\left(-\sqrt{3}\right)
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\theta =\frac{2\pi}{3}}
\]
Escrevendo
z na forma polar
\[ \bbox[#99CCFF,10px]
{z=r(\cos \theta +i\operatorname{sen}\theta )\quad \text{,}\quad r=|z|}
\]
\[ \bbox[#FFCCCC,10px]
{z=\frac{1}{2}\;\left(\cos \frac{2\pi}{3}+i\operatorname{sen}\frac{2\pi}{3}\right)}
\]