d)
\( \displaystyle z=\left(\frac{i}{1+i}\right)^{5} \)
Multiplicando o numerador e o denominador dentro dos parênteses pelo complexo conjugado do denominador
(
\( \overline{{z}}=1-i \))
\[
\begin{gather}
z=\left[\frac{i}{1+i}.\frac{(1-i)}{(1-i)}\right]^{5}\\[5pt]
z=\left[\frac{i(1-i)}{1.1+1.(-i)+i.1+i.(-i)}\right]^{5}\\[5pt]
z=\left[\frac{i-i.i}{1-i+i-i^{2}}\right]^{5}\\[5pt]
z=\left[\frac{i-i^{2}}{1-i^{2}}\right]^{5}
\end{gather}
\]
sendo
\( i^{2}=-1 \)
\[
\begin{gather}
z=\left[\frac{i-(-1)}{1-(-1)}\right]^{5}\\[5pt]
z=\left[\frac{i+1}{1+1}\right]^{5}\\[5pt]
z=\left[\frac{i+1}{2}\right]^{5}\\[5pt]
z=\frac{(i+1)^{5}}{2^{5}}\\[5pt]
z=\frac{(i+1).(i+1).(i+1).(i+1).(i+1)}{32}\\[5pt]
z=\frac{(i.i+i.1+1.i+1.1).(i.i+i.1+1.i+1.1).(i+1)}{32}\\[5pt]
z=\frac{(i^{2}+i+i+1).(i^{2}+i+i+1).(i+1)}{32}\\[5pt]
z=\frac{(-1+2i-1).(-1+2i-1).(i+1)}{32}\\[5pt]
z=\frac{2i.2i.(i+1)}{32}\\[5pt]
z=\frac{4i.i.(i+1)}{32}\\[5pt]
z=\frac{4i^{2}.(i+1)}{32}\\[5pt]
z=\frac{(-1).(i+1)}{8}\\[5pt]
z=-{\frac{1}{8}}-\frac{1}{8}i
\end{gather}
\]
O módulo é dado por
\[ \bbox[#99CCFF,10px]
{|z|=\sqrt{x^{2}+y^{2}}}
\]
\[
\begin{gather}
|z|=\sqrt{\left(-{\frac{1}{8}}\right)^{2}+\left(-{\frac{1}{8}}\right)^{2}}\\[5pt]
|z|=\sqrt{\frac{1}{64}+\frac{1}{64}}\\[5pt]
|z|=\sqrt{\frac{2}{64}}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{|z|=\frac{\sqrt{2}}{8}}
\]
O argumento é dado por
\[ \bbox[#99CCFF,10px]
{\theta=\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)}
\]
\[
\begin{gather}
\theta=\operatorname{arctg}\left[\frac{\left(-{\dfrac{1}{8}}\right)}{\left(-{\dfrac{1}{8}}\right)}\right]\\
\theta=\operatorname{arctg}(1)
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\theta =\frac{5\pi}{4}}
\]
Escrevendo
z na forma polar
\[ \bbox[#99CCFF,10px]
{z=r(\cos \theta +i\operatorname{sen}\theta )\quad \text{,}\quad r=|z|}
\]
\[ \bbox[#FFCCCC,10px]
{z=\frac{\sqrt{2}}{8}\;\left(\cos \frac{5\pi}{4}+i\operatorname{sen}\frac{5\pi}{4}\right)}
\]