Exercício Resolvido de Números Complexos
c)
\( z=-\sqrt{3}+i \)
O módulo é dado por
\[ \bbox[#99CCFF,10px]
{|z|=\sqrt{x^{2}+y^{2}}}
\]
\[
\begin{gather}
|z|=\sqrt{\left(-\sqrt{3}\right)^{2}+1^{2}}\\
|z|=\sqrt{3+1}\\
|z|=\sqrt{4}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{|z|=2}
\]
O argumento é dado por
\[ \bbox[#99CCFF,10px]
{\theta=\operatorname{arg}(z)=\operatorname{arctg}\left(\frac{y}{x}\right)}
\]
\[
\begin{gather}
\theta=\operatorname{arctg}\left(\frac{1}{-\sqrt{3}}\right)\\
\theta=\operatorname{arctg}\left(-{\frac{1}{\sqrt{3}}}.\frac{\sqrt{3}}{\sqrt{3}}\right)\\
\theta=\operatorname{arctg}\left(-{\frac{\sqrt{3}}{3}}\right)
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{\theta =\frac{5\pi}{6}}
\]
Escrevendo
z na forma polar
\[ \bbox[#99CCFF,10px]
{z=r(\cos \theta +i\operatorname{sen}\theta )\quad \text{,}\quad r=|z|}
\]
\[ \bbox[#FFCCCC,10px]
{z=2\;\left(\cos \frac{5\pi}{6}+i\operatorname{sen}\frac{5\pi}{6}\right)}
\]