Exercício Resolvido de Dinâmica
publicidade   



Um carrinho se desloca sobre uma superfície reta e horizontal. No carrinho há um plano inclinado, que forma um ângulo θ com a horizontal, sobre o plano coloca-se um corpo. Determinar a aceleração do carrinho para que o corpo permaneça em repouso sobre o plano inclinado. Despreze o atrito entre o corpo e o plano inclinado e adote g para a aceleração da gravidade.


Dados do problema:
  • Ângulo de inclinação do plano:    θ;
  • Aceleração da gravidade:    g.
Esquema do problema:

Adotamos um sistema de referência xy com eixo-x paralelo ao plano inclinado e sentido da descendente do plano.
Supõe-se o solo (Terra) sem aceleração, referencial inercial. O carrinho possui aceleração a em relação ao solo, referencial não-inercial. Para que o corpo permaneça em repouso sobre o carrinho ele deve ter, em relação ao solo, a mesma aceleração a do carrinho (Figura 1).
Figura 1

Solução

Isolando o corpo obtemos as forças que atuam nele (Figura 2).
  • \( \vec{P} \): força peso;
  • \( \vec{N} \): força normal de reação da superfície sobre o bloco.

Figura 2

A força peso \( \vec{P} \) pode ser decomposta em duas componentes, uma componente paralela ao eixo-x, \( {\vec P}_{x} \), e a outra componente normal ou perpendicular \( {\vec P}_{y} \). No triângulo à direita na Figura 3-A vemos que a força peso \( \vec{P} \) é perpendicular ao plano horizontal, forma um ângulo de 90º, o ângulo entre o plano inclinado e o plano horizontal é igual à θ, como os ângulos internos de um triângulo devem somar 180°, o ângulo α entre a força peso e a componente paralela deve ser
\[ \alpha +\theta +90°=180°\Rightarrow \alpha=180°-\theta -90°\Rightarrow \alpha=90°-\theta \]
As componentes do peso nas direções x e y são perpendiculares entre si, no triângulo à esquerda temos que o ângulo entre as forças peso \( \vec{P} \) e a componente do peso na direção y \( {\vec P}_{y} \) será
\[ 90°-\alpha \Rightarrow 90°-(90°-\theta)\Rightarrow 90°-90°+\theta \Rightarrow \theta \]


Figura 3

A aceleração do carrinho também pode ser decomposta nas direções x e y (Figura 3-B). O ângulo entre a aceleração \( \vec{a} \) e a componente da aceleração na direção do plano inclinado \( {\vec a}_{x} \) é θ, é o mesmo ângulo do plano inclinado, são ângulos alternos internos.

Desenhando as forças em um sistema de eixos coordenados xy (Figura 4) podemos obter suas componentes.
As componentes da aceleração serão dadas por
\[ \begin{gather} a_{x}=a\cos \theta \tag{I} \end{gather} \]
\[ \begin{gather} a_{y}=a\operatorname{sen}\theta \tag{II} \end{gather} \]
as componentes da força peso são dadas por
\[ \begin{gather} P_{x}=P\operatorname{sen}\theta \tag{III} \end{gather} \]
\[ \begin{gather} P_{y}=P\cos \theta \tag{IV} \end{gather} \]
Figura 4
Aplicando a 2.ª Lei de Newton
\[ \begin{gather} \bbox[#99CCFF,10px] {\vec{F}=m\vec{a}} \tag{V} \end{gather} \]
Na direção x temos apenas a componente Px do peso
\[ \begin{gather} P_{x}=ma_{x} \tag{VI} \end{gather} \]
substituindo as expressões (I) e (III) na expressão (VI)
\[ \begin{gather} P\operatorname{sen}\theta =ma\cos \theta \tag{VII} \end{gather} \]
a força peso é dada por
\[ \begin{gather} \bbox[#99CCFF,10px] {P=mg} \tag{VIII} \end{gather} \]
substituindo a expressão (VIII) na expressão (VII)
\[ \begin{gather} mg\operatorname{sen}\theta =ma\cos \theta \\[5pt] a=\frac{\cancel{m}g\operatorname{sen}\theta}{\cancel{m}\;\cos \theta} \end{gather} \]
Lembrando da Trigonometria    \( \operatorname{tg}\theta =\frac{\operatorname{sen}\theta }{\cos \theta} \)
\[ \begin{gather} \operatorname{tg} \theta =\frac{a}{g} \end{gather} \]
A aceleração será dada por
\[ \begin{gather} \bbox[#FFCCCC,10px] {a=g\operatorname{tg}\theta} \end{gather} \]
publicidade   

Licença Creative Commons
Fisicaexe - Exercícios Resolvidos de Física de Elcio Brandani Mondadori está licenciado com uma Licença Creative Commons - Atribuição-NãoComercial-Compartilha Igual 4.0 Internacional .