Solved Problem on Wave Function
advertisement   



Given the Gaussian distribution
\[ \begin{gather} \rho(x)=A\operatorname{e}^{-\lambda(x-a)^{2}} \end{gather} \]
where A, a and λ are constants.
a) Determine the constant A;
b) Determine \( \langle x\rangle \), \( \langle x^{2}\rangle \) e σ;
c) Sketch the graph of ρ(x).


Solution

a) The value of the constant A is calculated by the integral of the normalization of the function ρ(x)
\[ \begin{gather} \bbox[#99CCFF,10px] {\int_{-\infty}^{\infty}\rho(x)\;dx=1} \end{gather} \]
\[ \begin{gather} \int_{-\infty}^{\infty}A\operatorname{e}^{-\lambda(x-a)^{2}}\;dx=1 \tag{I} \end{gather} \]

Integral of    \( \displaystyle \int_{-\infty}^{\infty}A\operatorname{e}^{-\lambda (x-a)^{2}}\;dx \)

Squaring the integral
\[ \begin{gather} I^{2}=\left(\int_{-\infty}^{\infty}A\operatorname{e}^{-\lambda (x-a)^{2}}\;dx\right)^{2}\\[5pt] I^{2}=\int_{-\infty}^{\infty}A\operatorname{e}^{-\lambda(x-a)^{2}}\;dx\;\int_{-\infty}^{\infty}A\operatorname{e}^{-\lambda (x-a)^{2}}\;dx \end{gather} \]
changing to the second variable, x = y
\[ \begin{gather} I^{2}=\int_{-\infty}^{\infty}A\operatorname{e}^{-\lambda (x-a)^{2}}\;dx\int_{-\infty}^{\infty}A\operatorname{e}^{-\lambda (y-a)^{2}}\;dy\\[5pt] I^{2}=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}A\operatorname{e}^{-\lambda(x-a)^{2}}A\operatorname{e}^{-\lambda(y-a)^{2}}\;dx\;dy\\[5pt] I^{2}=A^{2}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\operatorname{e}^{-\lambda[(x-a)^{2}+(y-a)^{2}]}\;dx\;dy \tag{II} \end{gather} \]
changing of variables from Cartesian coordinates to polar coordinates
\[ \begin{gather} \left\{ \begin{matrix} x-a=r\cos \theta \\[5pt] y-a=r\operatorname{sen}\theta \end{matrix} \right. \tag{III} \end{gather} \]
The area element in Cartesian coordinates is
\[ \begin{gather} dA=dx\;dy \end{gather} \]
to obtain the area element in polar coordinates, we calculate the Jacobian given by the determinant
\[ \begin{gather} J=\left| \begin{matrix} \;\dfrac{\partial x}{\partial r}&\dfrac{\partial x}{\partial \theta}\;\\[5pt] \;\dfrac{\partial y}{\partial r}&\dfrac{\partial y}{\partial \theta}\; \end{matrix} \right| \end{gather} \]
calculation of the partial derivatives of the functions x and y given in (III)

\( \displaystyle x=r\cos \theta +a \)

\( \displaystyle \frac{\partial x}{\partial r}=\frac{\partial (r\cos \theta +a)}{\partial r}=\cos \theta \frac{\partial r}{\partial r}+\frac{\partial a}{\partial r}=\cos \theta .1+0=\cos \theta \)
\[ \displaystyle \frac{\partial x}{\partial r}=\frac{\partial (r\cos \theta +a)}{\partial r}=\cos \theta \frac{\partial r}{\partial r}+\frac{\partial a}{\partial r}=\cos \theta .1+0=\cos \theta \]


\( \displaystyle \frac{\partial x}{\partial \theta}=\frac{\partial (r\cos \theta+a)}{\partial \theta}=r\;\frac{\partial (\cos \theta )}{\partial\theta}+\frac{\partial a}{\partial \theta}=r(-\operatorname{sen}\theta )+0=-r\operatorname{sen}\theta \)
\[ \displaystyle \frac{\partial x}{\partial \theta}=\frac{\partial (r\cos \theta+a)}{\partial \theta}=r\;\frac{\partial (\cos \theta )}{\partial\theta}+\frac{\partial a}{\partial \theta}=r(-\operatorname{sen}\theta )+0=-r\operatorname{sen}\theta \]


\( \displaystyle y=r\operatorname{sen}\theta +a \)

\( \displaystyle \frac{\partial y}{\partial r}=\frac{\partial(r\operatorname{sen}\theta+a)}{\partial r}=\operatorname{sen}\theta \;\frac{\partial r}{\partial r}+\frac{\partial a}{\partial r}=\operatorname{sen}\theta.1+0=\operatorname{sen}\theta \)
\[ \displaystyle \frac{\partial y}{\partial r}=\frac{\partial(r\operatorname{sen}\theta+a)}{\partial r}=\operatorname{sen}\theta \;\frac{\partial r}{\partial r}+\frac{\partial a}{\partial r}=\operatorname{sen}\theta.1+0=\operatorname{sen}\theta \]


\( \displaystyle \frac{\partial y}{\partial \theta}=\frac{\partial(r\operatorname{sen}\theta +a)}{\partial \theta}=r\;\frac{\partial(\operatorname{sen}\theta )}{\partial \theta}+\frac{\partial a}{\partial \theta}=r\cos \theta +0=r\cos \theta \)
\[ \displaystyle \frac{\partial y}{\partial \theta}=\frac{\partial(r\operatorname{sen}\theta +a)}{\partial \theta}=r\;\frac{\partial(\operatorname{sen}\theta )}{\partial \theta}+\frac{\partial a}{\partial \theta}=r\cos \theta +0=r\cos \theta \]


\[ \begin{gather} dA=dx\;dy=J\;dr\;d\theta \end{gather} \]
\[ \begin{gather} J=\left| \begin{matrix} \;\cos \theta&-r\operatorname{sen}\theta \;\\[5pt] \;\operatorname{sen}\theta &r\cos\theta \end{matrix}\right|\\[5pt] J=\cos \theta .r\cos \theta-(-r\operatorname{sen}\theta .\operatorname{sen}\theta )\\[5pt] J=r\cos^{2}\theta +r\operatorname{sen}^{2}\theta \\[5pt] J=r(\underbrace{\cos^{2}\theta +\operatorname{sen}^{2}\theta}_{1})\\[5pt] J=r \end{gather} \]
\[ \begin{gather} dA=r\;dr\;d\theta \end{gather} \]
In Cartesian coordinates, the limits of integration are −∞ and +∞ in dx and dy to cover the entire plane (Figure 1), and in polar coordinates to cover the whole plane the limits are 0 and +∞ in dr and 0 and 2&pi in .

Figure 1

\[ \begin{align} \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} & \operatorname{e}^{-\lambda[(x-a)^{2}+(y-a)^{2}]}\;dx\;dy\Rightarrow \int_{{0}}^{\infty}\int_{{0}}^{{2\pi}}\operatorname{e}^{-\lambda [(r\cos \theta)^{2}+(r\operatorname{sen}\theta)^{2}]}r\;dr\;d\theta \Rightarrow\\[5pt] & \Rightarrow \int_{{0}}^{\infty}\int_{{0}}^{{2\pi}}\operatorname{e}^{-\lambda r^{2}[\underbrace{\cos ^{2}\theta +\operatorname{sen}^{\;2}\theta}_{1}]}r\;dr\;d\theta \Rightarrow \\[5pt] & \Rightarrow \int_{{0}}^{\infty}\int_{{0}}^{{2\pi}}\operatorname{e}^{-\lambda r^{2}}r\;dr\;d\theta \Rightarrow \\[5pt] & \Rightarrow \int_{{0}}^{\infty}r\operatorname{e}^{-\lambda r^{2}}\;dr\underbrace{\int_{{0}}^{{2\pi}}d\theta}_{2\pi} \tag{IV} \end{align} \]
Integral of    \( \displaystyle \int_{{0}}^{\infty}r\operatorname{e}^{-\lambda r^{2}}\;dr \)

Changing of variable
\[ \begin{array}{l} u=-\lambda r^{2}\\[5pt] du=-2\lambda r\;dr\Rightarrow d r=-{\dfrac{du}{2\lambda r}} \end{array} \]
changing the limits of integration

for   r = 0
we have   u = −λ.02 = 0

for   r = ∞
we have   u = −λ.∞2 = ∞
\[ \begin{align} \int_{{0}}^{\infty}r\operatorname{e}^{-\lambda r^{2}}\;dr & \Rightarrow \int_{{0}}^{-\infty}r\operatorname{e}^{u}\left(-{\frac{du}{2\lambda r}}\right)\Rightarrow-\frac{1}{2\lambda}\int_{{0}}^{-\infty}\operatorname{e}^{u}\;du\Rightarrow \\[5pt] & \Rightarrow -\frac{1}{2\lambda}\left(\left.\operatorname{e}^{u}\right|_{\;0}^{\;-\infty}\right)\Rightarrow -\frac{1}{2\lambda}\left(\operatorname{e}^{-\infty}-\operatorname{e}^{0}\right)\Rightarrow\\[5pt] & \Rightarrow -\frac{1}{2\lambda}\left(\frac{1}{\operatorname{e}^{\infty}}-1\right)\Rightarrow-\frac{1}{2\lambda}\left(\frac{1}{\infty}-1\right)\Rightarrow \\[5pt] & \Rightarrow -\frac{1}{2\lambda}\left(0-1\right)\Rightarrow \frac{1}{2\lambda} \end{align} \]
substituting into the expression (IV)
\[ \begin{gather} \int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\operatorname{e}^{-\lambda[(x-a)^{2}+(y-a)^{2}]}\;dx\;dy=\frac{1}{2\lambda}.2\pi =\frac{\pi}{\lambda} \end{gather} \]

Using equations (I) and (II) and substituting the result above
\[ \begin{gather} I^{2}=A^{2}\frac{\pi}{\lambda}=1\\[5pt] A^{2}=\frac{\lambda}{\pi} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {A=\sqrt{\frac{\lambda}{\pi}}} \end{gather} \]

b) The expectation value of x is calculated by the integral
\[ \begin{gather} \bbox[#99CCFF,10px] {\langle x\rangle =\int_{-\infty}^{\infty}x\rho(x)\;dx} \end{gather} \]
\[ \begin{gather} \langle x\rangle =\int_{-\infty}^{\infty}xA\operatorname{e}^{-\lambda (x-a)^{2}}\;dx\\[5pt] \langle x\rangle =A\int_{-\infty}^{\infty}x\operatorname{e}^{-\lambda(x-a)^{2}}\;dx \tag{V} \end{gather} \]
Integral of    \( \displaystyle \int_{-\infty}^{\infty}x\operatorname{e}^{-\lambda (x-a)^{2}}\;dx \)

Changing of variable
\[ \begin{array}[l] u=x-a\Rightarrow x=u+a\\[5pt] du=dr \end{array} \]
changing the limits of integration

for   x = −∞
we have   u = −∞−a = −∞

for   x = ∞
we have   u = ∞−a = ∞
\[ \begin{align} \int_{-\infty}^{\infty} & x\operatorname{e}^{-\lambda (x-a)^{2}}\;dx\Rightarrow \int_{-\infty}^{\infty}(u+a)\operatorname{e}^{-\lambda u^{2}}\;du\Rightarrow\\[5pt] & \Rightarrow \int_{-\infty}^{\infty}u\operatorname{e}^{-\lambda u^{2}}\;du+\int_{-\infty}^{\infty}a\operatorname{e}^{-\lambda u^{2}}\;du\Rightarrow\\[5pt] & \Rightarrow \int_{-\infty}^{\infty}u\operatorname{e}^{-\lambda u^{2}}\;du+a\int_{-\infty}^{\infty}\operatorname{e}^{-\lambda u^{2}}\;du \tag{VI} \end{align} \]
Integral of    \( \displaystyle \int_{-\infty}^{\infty}u\;\operatorname{e}^{-\lambda \;u^{\;2}}\;du \)

1st method
\[ \begin{align} \int_{-\infty}^{\infty}u\operatorname{e}^{-\lambda u^{2}}\;du & \Rightarrow \left.-{\frac{1}{2\lambda}}\operatorname{e}^{-\lambda u^{2}}\;\right|_{\;-\infty}^{\;\infty}\Rightarrow -\frac{1}{2\lambda}\left(\operatorname{e}^{-\lambda (\infty)^{2}}-\operatorname{e}^{-\lambda (-\infty)^{2}}\right)\Rightarrow\\[5pt] & \Rightarrow -\frac{1}{2\lambda}\left(\operatorname{e}^{-\infty}-\operatorname{e}^{-\infty}\right)\Rightarrow -\frac{1}{2\lambda}\left(\frac{1}{\operatorname{e}^{\infty}}-\frac{1}{\operatorname{e}^{\infty}}\right)\Rightarrow\\[5pt] & \Rightarrow -\frac{1}{2\lambda}\left(\frac{1}{\infty}-\frac{1}{\infty}\right)\Rightarrow -\frac{1}{2\lambda}\left(0-0\right)\Rightarrow 0 \end{align} \]
2nd method

Function \( f(u)=u \) is an odd function, and function \( g(u)=\operatorname{e}^{-\lambda u^{2}} \) is an even function, an odd function multiplied by an even function equals an odd function, which integrated into a symmetric interval (from −∞ to ∞) equals zero.

Integral of    \( \displaystyle \int_{-\infty}^{\infty}\operatorname{e}^{-\lambda u^{2}}\;du \)

The integral   \( I=\int_{-\infty}^{\infty}\operatorname{e}^{-\lambda u^{2}}\;du \),   is of the same type as the integral solved in part (a)   \( I=\int_{-\infty}^{\infty}A\operatorname{e}^{-\lambda(x-a)^{2}}\;dx \)   so its result is the same
\[ \begin{gather} I^{2}=\frac{\pi}{\lambda}\\[5pt] I=\sqrt{\frac{\pi}{\lambda}\;} \end{gather} \]
Note: The difference between the two functions is that the function ρ(x) is centered at point a on the abscissa axis, (xa) in the exponent, and the function in the integrand above, is centered at the origin, (u−0). Substituting the results above into expression (VI)
\[ \begin{gather} \int_{-\infty}^{\infty}x\operatorname{e}^{-\lambda(x-a)^{2}}\;dx=0+a\;\sqrt{\frac{\pi}{\lambda}\;}=a\;\sqrt{\frac{\pi}{\lambda}\;} \end{gather} \]

Substituting the constant A determined in item (a) and the value of the integral calculated above, in equation (V)
\[ \begin{gather} \langle x\rangle =\cancel{\sqrt{\frac{\lambda}{\pi}\;}}a\cancel{\;\sqrt{\frac{\pi}{\lambda}\;}} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\langle x\rangle =a} \end{gather} \]
The expectation value of x2 is calculated by the integral
\[ \begin{gather} \bbox[#99CCFF,10px] {\langle x^{2}\rangle =\int_{-\infty}^{\infty}x^{\;2}\rho(x)\;dx} \end{gather} \]
\[ \begin{gather} \langle x^{2}\rangle =\int_{-\infty}^{\infty}x^{2}A\operatorname{e}^{-\lambda (x-a)^{2}}\;dx\\[5pt] \langle x^{\;2}\rangle =A\int_{-\infty}^{\infty}x^{\;2}\operatorname{e}^{-\lambda (x-a)^{2}}\;dx \tag{VII} \end{gather} \]

Integral of    \( \displaystyle \int_{-\infty}^{\infty}x^{2}\operatorname{e}^{-\lambda(x-a)^{2}}\;dx \)

Changing of variable
\[ \begin{array}{l} u=x-a\Rightarrow x=u+a\\[5pt] du=dr \end{array} \]
changing the limits of integration

for   x = −∞
we have   u = −∞−a = −∞

for   x = ∞
we have   u = ∞−a = ∞
\[ \begin{align} \int_{-\infty}^{\infty} & x^{\;2}\operatorname{e}^{-\lambda (x-a)^{2}}\;dx\Rightarrow \int_{-\infty}^{\infty}(u+a)^{2}\operatorname{e}^{-\lambda u^{2}}\;du\Rightarrow\\[5pt] & \Rightarrow \int_{-\infty}^{\infty}(u^{2}+2ua+a^{2})\operatorname{e}^{-\lambda u^{2}}\;du\Rightarrow\\[5pt] & \Rightarrow \int_{-\infty}^{\infty}u^{2}\operatorname{e}^{-\lambda u^{2}}+2ua\operatorname{e}^{-\lambda u^{2}}+a^{2}\operatorname{e}^{-\lambda u^{2}}\;du\Rightarrow \hfill\\[5pt] & \Rightarrow \int_{-\infty}^{\infty}u^{2}\operatorname{e}^{-\lambda u^{2}}\;du+\int_{-\infty}^{\infty}2ua\operatorname{e}^{-\lambda u^{2}}\;du+\int_{-\infty}^{\infty}a^{2}\operatorname{e}^{-\lambda u^{2}}\;du\Rightarrow\\[5pt] & \Rightarrow \int_{-\infty}^{\infty}u^{2}\operatorname{e}^{-\lambda u^{2}}\;du+2a\underbrace{\int_{-\infty}^{\infty}u\operatorname{e}^{-\lambda u^{2}}\;du}_{0}+a^{2}\underbrace{\int_{-\infty}^{\infty}\operatorname{e}^{-\lambda u^{2}}\;du}_{\sqrt{\frac{\pi}{\lambda}}} \tag{VIII} \end{align} \]
Integral of    \( \displaystyle \int_{-\infty}^{\infty}u^{2}\operatorname{e}^{-\lambda u^{2}}\;du=\int_{-\infty}^{\infty}u.u\operatorname{e}^{-\lambda u^{2}}\;du \)
\[ \displaystyle \int_{-\infty}^{\infty}u^{2}\operatorname{e}^{-\lambda u^{2}}\;du=\int_{-\infty}^{\infty}u.u\operatorname{e}^{-\lambda u^{2}}\;du \]


Using Integration by Parts   \( \int fg'=fg-\int f'g \)

\[ \begin{gather} \begin{array}{l} f=u & \qquad g'=u\operatorname{e}^{-\lambda u^{2}}\\[5pt] \begin{array}{l} f'=1\\[5pt] \phantom{{\frac{\phantom{{}}}{\phantom{{}}}}}\\[5pt] \phantom{{\frac{\phantom{{}}}{\phantom{{}}}}}\\[5pt] \phantom{{\frac{\phantom{{}}}{\phantom{{}}}}} \end{array} & \qquad \begin{array}{l} g=\int u\operatorname{e}^{-\lambda u^{2}}\;du=\int \operatorname{e}^{-\lambda u^{2}}u\;du\\[5pt] k=-\lambda u^{2}\Rightarrow\dfrac{dk}{du}=-2\lambda u\Rightarrow u du=-{\dfrac{dk}{2\lambda}}\\[5pt] g=-\int \operatorname{e}^{u}\;\dfrac{du}{2\lambda}=\dfrac{\operatorname{e}^{u}}{2\lambda}=\dfrac{\operatorname{e}^{-x^{2}}}{2\lambda} \end{array} \end{array} \end{gather} \]

\[ \begin{align} \int_{-\infty}^{\infty} & u^{2}\operatorname{e}^{-\lambda u^{2}}\;du\Rightarrow\left.u\frac{\operatorname{e}^{-\lambda u^{2}}}{2\lambda}\;\right|_{\;-\infty}^{\;\infty}+\int_{-\infty}^{\infty}1.\frac{\operatorname{e}^{-\lambda u^{2}}}{2\lambda}\;du\Rightarrow\\[5pt] & \Rightarrow\left.u\frac{\operatorname{e}^{-\lambda u^{2}}}{2\lambda}\;\right|_{\;-\infty}^{\;\infty}+\int_{-\infty}^{\infty}1.\frac{\operatorname{e}^{-\lambda u^{2}}}{2\lambda}\;du\Rightarrow\\[5pt] & \Rightarrow\frac{1}{2\lambda}\left(\frac{\infty}{\operatorname{e}^{\lambda(\infty)^{2}}}-\frac{-\infty}{\operatorname{e}^{\lambda (-\infty)^{2}}}\right)+\frac{1}{2\lambda}\underbrace{\int_{-\infty}^{\infty}{\operatorname{e}^{-\lambda u^{2}}\;du}}_{\sqrt{\frac{\pi}{\lambda}}}\Rightarrow \frac{1}{2\lambda}\sqrt{\frac{\pi}{\lambda}} \tag{IX} \end{align} \]
Note: In the terms in parentheses \( u=\pm \infty \) tends to \( \pm \infty \), \( \operatorname{e}^{\lambda (\pm \infty )^{2}} \) tends to \( +\infty \), but the fraction \( \frac{1}{\operatorname{e}^{\lambda (\pm \infty )^{2}}} \) tends to zero (Figure 2). As the fraction tends to zero faster than u tends to infinity, the terms \( \frac{\pm \infty}{\operatorname{e}^{\lambda (\pm \infty )^{2}}} \) tend to zero.
Figure 2
substituting expression (IX) into expression (VIII)
\[ \begin{gather} \int_{-\infty}^{\infty}x^{\;2}\operatorname{e}^{-\lambda(x-a)^{2}}\;dx\Rightarrow \frac{1}{2\lambda}\sqrt{\frac{\pi}{\lambda}}+a^{2}\sqrt{\frac{\pi}{\lambda}}\Rightarrow \left(\frac{1}{2\lambda}+a^{2}\right)\sqrt{\frac{\pi}{\lambda}} \end{gather} \]

Substituting the constant A determined in item (a) and the value of the integral calculated above, into equation (VII)
\[ \begin{gather} \langle x^{\;2}\rangle =\cancel{\sqrt{\frac{\lambda}{\pi}}}\;\left(\frac{1}{2\lambda}+a^{2}\right)\cancel{\sqrt{\frac{\pi}{\lambda}}} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\langle x^{2}\rangle =\frac{1}{2\lambda}+a^{2}} \end{gather} \]
The value of variance σ2 is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\sigma^{2}=\langle x^{2}\rangle -\langle x \rangle ^{2}} \end{gather} \]
substituting the values of \( \langle x\rangle \) and \( \langle x^{2}\rangle \) found above
\[ \begin{gather} \sigma^{2}=\frac{1}{2\lambda}+a^{2}-a^{2}\\[5pt] \sigma^{2}=\frac{1}{2\lambda} \end{gather} \]
the value of the standard deviation σ is
\[ \begin{gather} \bbox[#FFCCCC,10px] {\sigma=\frac{1}{\sqrt{2\lambda}\;}} \end{gather} \]

c) Graphic sketch (Figure 3)
Figure 3
advertisement