Contours
Português
English
advertisement
Arcs and Contours
Identify the curves or arcs of the equations given below, make the graphs and identify the directions in each case.
\( \mathsf{a)}\;\; \displaystyle z=3t+it^{2}\qquad ,\qquad -\infty \lt t \lt \infty \)
Solution
\( \mathsf{b)}\;\; \displaystyle z=r(\cos t+i\operatorname{sen}t)\qquad ,\qquad -\frac{\pi }{4}\leqslant t\leqslant \pi \qquad ,\qquad r\gt 0 \)
Solution
\( \mathsf{c)}\;\; \displaystyle z=\frac{1}{t}+it\qquad ,\qquad 1\leqslant t\lt \infty \)
Solution
\( \mathsf{d)}\;\; \displaystyle z=t+\frac{2i}{t}\qquad ,\qquad -\infty \lt t \lt 0 \)
Solution
\( \mathsf{e)}\;\; \displaystyle z=t+i\sqrt{1-t^{2}\;}\qquad ,\qquad -1\leqslant t\leqslant 1 \)
Solution
\( \mathsf{f)}\;\; \displaystyle z=t-i\sqrt{1-t^{2}\;}\qquad ,\qquad -1\leqslant t\leqslant 1 \)
Solution
\( \mathsf{g)}\;\; \displaystyle z=\sqrt{1-t^{2}\;}+it\qquad ,\qquad -1\leqslant t\leqslant 1 \)
Solution
advertisement
Fisicaexe - Physics Solved Problems
by
Elcio Brandani Mondadori
is licensed under a
Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
.