Solved Problem on Contours
advertisement   



\( \mathsf{g)}\;\; \displaystyle z=\sqrt{1-t^{2}\;}+it\qquad ,\qquad -1\leqslant t\leqslant 1 \)


The function z is a parametric function of the type
\[ \bbox[#99CCFF,10px] {z(t)=x(t)+iy(t)} \]
Identifying the functions x(t) and y(t)
\[ \begin{align} & x(t)=\sqrt{1-t^{2}\;} \tag{I}\\[10pt] & y(t)=t \tag{II} \end{align} \]
substituting expression (I) into expression (II)
\[ x=\sqrt{1-y^{2}\;} \]
squaring both sides of equation
\[ \begin{gather} x^{2}=\left(\sqrt{1-y^{2}\;}\right)^{2}\\ x^{2}=1-y^{2}\\ x^{2}+x^{2}=1 \end{gather} \]
For t = −1, we have x = −1 and   \( x=\sqrt{1-(-1)^{2}\;}=0 \), for t = 0, we have x = 0 and   \( x=\sqrt{1-0^{2}\;}=1 \), for t = 1, we have x = 1 and   \( x=\sqrt{1-1^{2}\;}=0 \).
Graph 1

The function z(t) represents a semicircle on the right side of the y-axis (1st and 4th quadrants) and oriented from −1 to 1, (Graph 1).
advertisement