Solved Problem on Contours
\( \mathsf{d)}\;\; \displaystyle z=t+\frac{2i}{t}\qquad ,\qquad -\infty \lt t \lt 0 \)
The function
z is a parametric function of the type
\[ \bbox[#99CCFF,10px]
{z(t)=x(t)+iy(t)}
\]
Identifying the functions
x(
t) and
y(
t)
\[
\begin{align}
& x(t)=t \tag{I}\\[10pt]
& y(t)=\frac{2}{t} \tag{II}
\end{align}
\]
substituting expression (I) into expression (II)
\[
y=\frac{2}{x}
\]
The function
z(
t) represents a
branch of hyperbola
oriented from (−∞, 0) to (0, −∞), (Graph 1).