a)
\( f(z)=z \), along the path from the origin to point 1+
i.
- Parameterization of the γ curve (Figure 1)
The parameterization of a line is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{z(t)=z_{1}+t(z_{2}-z_{1})}
\end{gather}
\]
where
z1 and
z2 are the start and end points of the curve,
\( z_{1}=0+0i \)
and
\( z_{2}=1+i \)
\[
\begin{gather}
z(t)=(0+0i)+t[(1+i)-(0+0i)]\\[5pt]
z(t)=t[1+i]\ \ \phantom{{}}\\[5pt]
\qquad \qquad \qquad \qquad z(t)=t+it\qquad ,\qquad 0\leqslant t\leqslant 1 \tag{I}
\end{gather}
\]
- Derivative of z(t) = t+it
\[
\begin{gather}
z'(t)=\frac{dz}{dt}=1+i \tag{II}
\end{gather}
\]
The contour integral is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\int f(z)\;dz=\int f(z(t))z'(t)\;dt} \tag{III}
\end{gather}
\]
\[
\begin{gather}
f(z)=z=x+iy \tag{IV}
\end{gather}
\]
using expression (I) we have
f(
z(
t))
\[
\begin{gather}
z(t)=\underbrace{\ t\ }_{x(t)}+\underbrace{\ t\ }_{y(t)}i \tag{V}
\end{gather}
\]
substituting the values of
x(
t) and
y(
t) of expression (V) into expression (IV)
\[
\begin{gather}
f(z(t))=t+it \tag{VI}
\end{gather}
\]
substituting expressions (II) and (VI) into expression (III)
\[
\begin{split}
\int f(z)\;dz &=\int_{0}^{1}(t+it)(1+i)\;dt=\\[5pt]
&=\int_{0}^{1}t(1+i)(1+i)\;dt=\\[5pt]
&=\int_{0}^{1}t(1+i)^{2}\;dt=\\[5pt]
&=(1+i)^{2}\int_{0}^{1}t\;dt=\\[5pt]
&=(1^{2}+2i+i^{2})\;\left(\left.\frac{t^{2}}{2}\;\right|_{0}^{1}\right)=\\[5pt]
&=(1+2i-1)\;\left(\frac{1}{2}\right)=\\[5pt]
&=\cancel{2} i\times\frac{1}{\cancel{2}}
\end{split}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\int_{0}^{1+i}f(z)\;dz=i}
\end{gather}
\]