Solved Problem on Black Body Radiation
advertisement   



At a given temperature λmax = 6500 Å for a blackbody cavity. What will λmax be if the temperature of the cavity walls is increased so that the rate of emission of spectral radiation is doubled?


Problem data:
  • Wavelength at temperature T1:    λmax1 = 6500 Å;
  • Relationship between spectral radiations at temperatures T1 and T2: RT2 = 2RT1.
Solution

First, let's convert the given wavelength in angstrom (Å) to meters (m) used in the International System of Units (SI)
\[ \begin{gather} \lambda_{max1}=6500\;\cancel{\overset{\circ}{\mathsf{A}}}\times\frac{1\times10^{-10}\;\text{m}}{1\;\cancel{\overset{\circ}{\mathsf{A}}}}=6.5\times 10^{3}\times 10^{-10}\;\text{m}=6.5\times10^{-7}\;\text{m} \end{gather} \]
The spectral radiation is given by Stefan-Boltzmann Law
\[ \begin{gather} \bbox[#99CCFF,10px] {R_{T}=\sigma T^{4}} \end{gather} \]
writing this expression for situations 1 and 2
\[ \begin{gather} R_{T1}=\sigma T_{1}^{4} \tag{I-a} \end{gather} \]
\[ \begin{gather} R_{T2}=\sigma T_{2}^{4} \tag{I_b} \end{gather} \]
substituting the expressions (I-a) and (I-b) into the given relationship between the spectral radiations
\[ \begin{gather} R_{T1}=2R_{T2}\\[5pt] \cancel{\sigma} T_{1}^{4}=2\cancel{\sigma} T_{2}^{4}\\[5pt] T_{1}^{4}=2T_{2}^{4} \tag{II} \end{gather} \]
Wien's Law is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\lambda_{max}T=2.989\times 10^{-3}} \end{gather} \]
using this expression for situations 1 and 2, we obtain the temperatures
\[ \begin{gather} \lambda _{max1}T_{1}=2.989\times 10^{-3}\\[5pt] T_{1}=\frac{2.989\times 10^{-3}}{\lambda_{max1}} \tag{III-a} \end{gather} \]
\[ \begin{gather} \lambda _{max2}T_{2}=2.989\times 10^{-3}\\[5pt] T_{2}=\frac{2.989\times 10^{-3}}{\lambda_{max2}} \tag{III-b} \end{gather} \]
substituting expressions (III-a) and (III-b) into expression (II)
\[ \begin{gather} \left(\frac{2.989\times 10^{-3}}{\lambda_{max2}}\right)^{4}=2\left(\frac{2.989\times 10^{-3}}{\lambda_{max1}}\right)^{4}\\[5pt] \frac{\cancel{\left(2.989\times 10^{-3}\right)^{4}}}{\lambda_{max2}^{4}}=2\frac{\cancel{\left(2.989\times 10^{-3}\right)^{4}}}{\lambda_{max1}^{4}}\\[5pt] \frac{1}{\lambda_{max2}^{4}}=2\frac{1}{\lambda_{max1}^{4}}\\[5pt] \lambda_{max2}^{4}=\frac{\lambda_{max1}^{4}}{2}\\[5pt] \lambda_{max2}=\sqrt[{4}]{\frac{\lambda_{max1}^{4}}{2}}\\[5pt] \lambda_{max2}=\frac{\lambda_{max1}}{\sqrt[{4}]{2}}\\[5pt] \lambda_{max2}=\frac{6.5\times 10^{-7}}{1.189}\\[5pt] \lambda_{max2}=5.466\times 10^{-7}\;\text{m} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\lambda_{max2}=5466\;\overset{\circ}{{\mathsf{A}}}} \end{gather} \]
advertisement