Solved Problem on Black Body Radiation
advertisement   



Use the relationship \( \begin{gather} R(\nu )\,d\nu =\frac{c}{4}\rho (\nu )\,d\nu \end{gather} \) between spectral radiance and energy density, and Planck's Radiation Law to derive Stefan's law. That is, show that
\[ \begin{gather} R_{T}=\int_{{0}}^{{\infty}}{\frac{2\pi h}{c^{2}}\frac{\nu^{3}\;d\nu}{\operatorname{e}^{h\nu /{k T}}-1}}=\sigma T^{4} \end{gather} \]
where \( \begin{gather} \sigma =\dfrac{2\pi ^{5}k^{4}}{15c^{2}h^{3}} \end{gather} \)

hint \( \begin{gather} {\Large\int}_{{0}}^{{\infty}}{\dfrac{q^{3}\;dq}{\operatorname{e}^{q}-1}}=\dfrac{\pi ^{4}}{15} \end{gather} \)


Problem data:
  • Relationship between spectral radiance and energy density:    \( R(\nu )\,d\nu =\dfrac{c}{4}\rho (\nu )\,d\nu \).
Solution

Planck's Radiation Law for energy density is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\rho (\nu )\,d\nu =\frac{8\pi \nu^{2}}{c^{3}}\frac{h\nu}{\operatorname{e}^{h\nu /{k T}}-1}\,d\nu} \tag{I} \end{gather} \]
substituting expression (I) into the relationship between spectral radiance and energy density given in the problem, the radiance with a frequency between (ν and ν+dν) will be
\[ \begin{gather} R(\nu)\,d\nu =\frac{c}{4}\frac{8\pi \nu^{2}}{c^{3}}\frac{h\nu}{\operatorname{e}^{h\nu /{k T}}-1}\,d\nu \\[5pt] R(\nu)\,d\nu =\frac{2\pi h}{c^{2}}\frac{\nu^{3}\,d\nu}{\operatorname{e}^{h\nu /{k T}}-1} \end{gather} \]
The integral of the spectral radiance R(ν) over all frequencies will be the total radiated energy
\[ \begin{gather} R_{T}=\int_{{0}}^{{\infty}}{R(\nu)\,d\nu}\\[5pt] R_{T}=\int_{{0}}^{{\infty}}{\frac{2\pi h}{c^{2}}\frac{\nu^{3}\,d\nu }{\operatorname{e}^{h\nu /{k T}}-1}} \end{gather} \]
Integration of   \( \displaystyle \int_{{0}}^{{\infty}}{\frac{2\pi h}{c^{2}}\frac{\nu^{3}\,d\nu}{\operatorname{e}^{h\nu /{k T}}-1}} \)

substituting
\[ \begin{gather} q=\frac{h\nu }{kT}\Rightarrow \nu =\frac{kT}{h}\;q \end{gather} \]
differentiating ν with respect to q
\[ \begin{gather} \frac{d\nu}{dq}=\frac{kT}{h}\Rightarrow d\nu=\frac{kT}{h}\,dq \end{gather} \]
cubing ν
\[ \begin{gather} \nu^{3}=\left(\frac{kT}{h}\,q\right)^{3}\Rightarrow \nu^{3}=\frac{k^{3}T^{3}}{h^{3}}\,q^{3} \end{gather} \]
changing the limits of integration

for   \( \nu =0 \)
we have   \( q=\dfrac{h .0}{kT}\Rightarrow q=0 \)

for   \( \nu =\infty \)
we have   \( q=\dfrac{h.\infty }{kT}\Rightarrow q=\infty \)

substituting these values ​​in the integral
\[ \begin{gather} \int_{{0}}^{{\infty}}{\frac{2\pi h}{c^{2}}\frac{k^{3}T^{3}}{h^{3}}\frac{q^{3}}{\operatorname{e}^{q}-1}\frac{kT}{h}\,dq}=\int_{{0}}^{{\infty}}{\frac{2\pi}{c^{2}}\frac{k^{4}T^{4}}{h^{3}}\frac{q^{3}\,dq}{\operatorname{e}^{q}-1}} \end{gather} \]
as the term   \( \dfrac{2\pi}{c^{2}}\dfrac{k^{4}T^{4}}{h^{3}} \)   is constant, it can be moved out of the integral
\[ \begin{gather} \frac{2\pi}{c^{2}}\frac{k^{4}T^{4}}{h^{3}}\int_{{0}}^{{\infty}}{\frac{q^{3}\,dq}{\operatorname{e}^{q}-1}} \end{gather} \]
using the hint given in the problem   \( {\Large\int}_{{0}}^{{\infty}}{\dfrac{q^{3}\;dq}{\operatorname{e}^{q}-1}}=\dfrac{\pi^{4}}{15} \)
\[ \begin{gather} \int_{{0}}^{{\infty }}{\frac{2\pi h}{c^{2}}\frac{\nu^{3}\,d\nu}{\operatorname{e}^{h\nu /{k T}}-1}}=\frac{2\pi}{c^{2}}\frac{k^{4}T^{4}}{h^{3}}\frac{\pi^{4}}{15}=\frac{2\pi^{5}}{15\,c^{2}}\frac{k^{4}T^{4}}{h^{3}} \end{gather} \]
\[ \begin{gather} R_{T}=\frac{2\pi^{5}}{15\,c^{2}}\frac{k^{4}T^{4}}{h^{3}} \end{gather} \]
setting   \( \sigma \equiv \frac{2\pi^{5}}{15\,c^{2}}\frac{k^{4}}{h^{3}} \),   we have Stefan's Law
\[ \begin{gather} \bbox[#FFCCCC,10px] {R_{T}=\sigma T^{4}} \tag{Q.E.D.} \end{gather} \]

Note: Q.E.D is the abbreviation of the Latin expression "Quod Erat Demonstrandum" which means "Which was to be Demonstrated".
advertisement