A block of mass m is attached to a spring, the spring constant is equal to k. The block
is launched, from the equilibrium position O, with an initial velocity v0.
Determine:
a) The differential equation of motion;
b) The solution of the equation for the mass-spring system and the angular frequency of oscillations.
Problem data:
- Mass of body: m;
- Spring constant: k;
- Initial position (t = 0): x0;
- Initial speed (t = 0): v0.
Problem diagram:
We choose a reference frame with a positive direction to the right. The block is at the origin of the
reference frame,
x0 = 0 and launched with intial velocity
v0. When
released, the spring force will act to restore the equilibrium position (Figure 1). With this, we write
the
Initial Conditions of the problem
\[
\begin{align}
& x(0)=0\\[10pt]
& v=\frac{dx(0)}{dt}=v_{0}
\end{align}
\]
Solution
a) Applying
Newton's Second Law (Figure 1)
\[
\begin{gather}
\bbox[#99CCFF,10px]
{F=m\frac{d^{2}x}{dt^{2}}} \tag{I}
\end{gather}
\]
the force acting on the block is the spring force
\( {\vec{F}}_{S} \)
given, in magnitude, by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{F_{s}=-kx} \tag{II}
\end{gather}
\]
the minus sign in the spring force means that it acts
in the opoosite direction of the displacement
of the block (acts in the direction of restoring equilibrium). Substituting the expression (II into the
expression (I)
\[
\begin{gather}
-kx=m\frac{d^{2}x}{dt^{2}}\\[5pt]
m\frac{d^{2}x}{dt^{2}}+kx=0
\end{gather}
\]
this is a
Second Order Homogeneous Differential Equation. Dividing the equation by the mass
m
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\frac{d^{2}x}{dt^{2}}+\frac{k}{m}x=0}
\end{gather}
\]
b) In the equation of the previous item we will make the following definitions
\[
\begin{gather}
\omega_{0}^{2}\equiv \frac{k}{m}
\end{gather}
\]
where ω
0 is the angular frequency
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{\omega_{0}=\sqrt{\frac{k}{m}\;}}
\end{gather}
\]
\[
\begin{gather}
\frac{d^{2}x}{dt^{2}}+\omega_{0}^{2}x=0 \tag{III}
\end{gather}
\]
Solution of
\( \displaystyle \frac{d^{2}x}{dt^{2}}+\omega_{0}^{2}x=0 \)
The solution to this type of equation is found substituting
\[
\begin{array}{l}
x=\operatorname{e}^{\lambda t}\\[5pt]
\dfrac{dx}{dt}=\lambda \operatorname{e}^{\lambda t}\\[5pt]
\dfrac{d^{2}x}{dt^{2}}=\lambda^{2}\operatorname{e}^{\lambda t}
\end{array}
\]
substituting these values into the differential equation
\[
\begin{gather}
\lambda^{2}\operatorname{e}^{\lambda t}+\omega_{0}^{2}\operatorname{e}^{\lambda t}=0\\[5pt]
\operatorname{e}^{\lambda t}\left(\lambda^{2}+\omega_{0}^{2}\right)=0\\[5pt]
\lambda^{2}+\omega_{0}^{2}=\frac{0}{\operatorname{e}^{\lambda t}}\\[5pt]
\lambda^{2}+\omega_{0}^{2}=0
\end{gather}
\]
this is the
Characteristic Equation that has a solution
\[
\begin{gather}
\lambda ^{2}=-\omega_{0}^{2}\\
\lambda =\sqrt{-\omega_{0}^{2}}\\
\lambda _{1,2}=\pm \omega_{0}\text{i}
\end{gather}
\]
where
\( \mathsf{i}=\sqrt{-1\;} \).
The solution of the differential equation will be
\[
\begin{gather}
x=C_{1}\operatorname{e}^{\lambda_{1}t}+C_{2}\operatorname{e}^{\lambda_{2}t}\\[5pt]
x=C_{1}\operatorname{e}^{2\omega_{0}\mathsf{i}t}+C_{2}\operatorname{e}^{-2\omega_{0}\mathsf{i}t}
\end{gather}
\]
where
C1 and
C2 are constants of integration, using
Euler's Formula
\( \operatorname{e}^{\mathsf{i}\theta }=\cos \theta+\mathsf{i}\sin \theta \)
\[
\begin{gather}
x=C_{1}\left(\cos \omega_{0}t+\mathsf{i}\operatorname{sen}\omega_{0}t\right)+C_{2}\left(\cos\omega_{0}t-\mathsf{i}\operatorname{sen}\omega_{0}t\right)\\[5pt]
x=C_{1}\cos \omega_{0}t+\mathsf{i}C_{1}\operatorname{sen}\omega_{0}t+C_{2}\cos \omega_{0}t-\mathsf{i}C_{2}\operatorname{sen}\omega_{0}t\\[5pt]
x=\left(C_{1}+C_{2}\right)\cos \omega_{0}t+\mathsf{i}\left(C_{1}-C_{2}\right)\operatorname{sen}\omega_{0}t
\end{gather}
\]
defining two new constants
α and
β in terms of
C1 and
C2
\[
\begin{gather}
\alpha \equiv C_{1}+C_{2}\\[5pt]
\text{and}\\[5pt]
\beta \equiv\mathsf{i}(C_{1}-C_{2})
\end{gather}
\]
\[
\begin{gather}
x=\alpha \cos \omega_{0}t+\beta \sin \omega_{0}t \tag{IV}
\end{gather}
\]
Differentiation of the expression (IV) with respect to time, the function
x(
t) is a sum of
functions, the derivative is given by the sum of the derivatives
\[
\begin{gather}
(f+g)'=f'+g'
\end{gather}
\]
and the functions sine and cosine are composite functions, using the
Chain Rule
\[
\begin{gather}
\frac{df[w(t)]}{dt}=\frac{df}{dw}\frac{dw}{dt}
\end{gather}
\]
with
\( f=\alpha \cos w \),
\( g=\beta \sin w \)
and
\( w=\omega_{0}t \)
\[
\begin{gather}
\frac{dx}{dt}=\frac{df}{dt}+\frac{dg}{dt}\\[5pt]
\frac{dx}{dt}=\frac{df}{dw}\frac{dw}{dt}+\frac{dg}{dw}\frac{dw}{dt}\\[5pt]
\frac{dx}{dt}=\frac{d\left(\alpha\cos w\right)}{dw}\frac{d\left(\omega_{0}t\right)}{dt}+\frac{d\left(\beta\sin w\right)}{dw}\frac{d\left(\omega_{0}t\right)}{dt}\\[5pt]
\frac{dx}{dt}=\left(-\alpha\sin w\right)(\omega_{0})+\left(\beta \cos w\right)(\omega_{0})\\[5pt]
\frac{dx}{dt}=-\omega_{0}\alpha\sin \omega_{0}t+\omega_{0}\beta \cos \omega_{0}t\\[5pt]
\frac{dx}{dt}=\omega_{0}\left(-\alpha \sin \omega_{0}t+\beta \cos \omega_{0}t\right) \tag{V}
\end{gather}
\]
Substituting
Initial Conditions into expressions (IV) amd (V)
\[
\begin{gather}
x(0)=0=\alpha \cancelto{1}{\cos \omega_{0}\times 0}+\beta\cancelto{0}{\sin \omega_{0}\times 0}\\[5pt]
\alpha =0 \tag{VI}
\end{gather}
\]
\[
\begin{gather}
\frac{dx(0)}{dt}=v_{0}=\omega_{0}\left(-\alpha\cancelto{0}{\sin \omega_{0}\times 0}+\omega_{0}\beta \cancelto{1}{\cos \omega_{0}\times 0}\right)\\
v_{0}=\omega_{0}\beta \\
\beta =\frac{v_{0}}{\omega_{0}} \tag{VII}
\end{gather}
\]
substituting the constants (VI) and (VII) into expression (IV)
\[
\begin{gather}
x=\frac{v_{0}}{\omega_{0}}\sin \omega_{0}t
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{x(t)=\frac{v_{0}}{\omega_{0}}\sin \omega_{0}t}
\end{gather}
\]