A steamboat, sails at a constant speed
v (km/h), and consumes 0.3 + 0.001
v3 tonnes
of coal per hour. Calculate:
a) The speed that should have a 1000 km route to have a minimum consumption;
b) The amount of coal consumed on this trip.
Data problem:
- Coal consume rate: \( c=0.3+0.001v^{3}\;\frac{\text{t}}{\text{h}} \).
Solution
a) The total consumption of coal
CT during the trip will be the consumption rate per unit
of time
c, given in the problem, multiplied by the time of travel Δ
t
\[
\begin{gather}
C_{T}=c\Delta t \tag{I}
\end{gather}
\]
as the speed of the ship is constant the time of trip can be obtained from the expression of the average
speed
\[ \bbox[#99CCFF,10px]
{v=\frac{\Delta x}{\Delta t}}
\]
\[
\begin{gather}
\Delta t=\frac{\Delta x}{v} \tag{II}
\end{gather}
\]
Substituting the consumption of coal given in the problem and the time obtained from (II) into the
expression (I)
\[
C_{T}=\left(0.3+0.001v^{3}\right)\frac{\Delta x}{v}
\]
for the distance given in the problem, Δ
x = 1000 km
\[
\begin{gather}
C_{T}=\left(0.3+0.001v^{3}\right)\frac{1000}{v}\\
C_{T}=\frac{300}{v}+\frac{v^{3}}{v}\\
C_{T}=\frac{300}{v}+v^{2} \tag{III}
\end{gather}
\]
To find the speed at which consumption is minimum, we take the derivative with respect to time of the
expression (III) and equal to zero.
Differentiation of
\( C_{T}=\dfrac{300}{v}+v^{2} \)
\[
\begin{gather}
\frac{dC_{T}}{dv}=300 v^{-1}+v^{2}\\
\frac{dC_{T}}{dv}=-1\times 300 v^{-1-1}+2 v^{2-1}\\
\frac{dC_{T}}{dv}=-300 v^{-2}+2 v^{1}\\
\frac{dC_{T}}{dv}=-{\frac{300}{v^{2}}}+2v
\end{gather}
\]
\[
-{\frac{300}{v^{2}}}+2v=0
\]
multiplying this expression by
v2
\[
\begin{gather}
\qquad \qquad\quad -\frac{300}{v^{2}}+2v=0\qquad (\times\;v^{2})\\
-{\frac{300}{\cancel{v^{2}}}}\cancel{v^{2}}+2v\;v^{2}=0\\
-300+2v^{3}=0\\
2v^{3}=300\\
v^{3}=\frac{300}{2}\\
v^{3}=150\\
v=\sqrt[{3\;}]{150\;}
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{v\simeq 5.3\;\text{km/h}}
\]
To verify if this is the minimum point of the function, we calculate the second derivative.
Differentiation of
\( \dfrac{dC_{T}}{dv}=-{\dfrac{300}{v^{2}}}+2v \)
\[
\begin{gather}
\frac{d^{2}C_{T}}{dv^{2}}=-300v^{-2}+2v\\
\frac{d^{2}C_{T}}{dv^{2}}=-(-2)\times 300v^{-2-1}+2v^{1-1}\\
\frac{d^{2}C_{T}}{dv^{2}}=600v^{-3}+2v^{0}\\
\frac{d^{2}C_{T}}{dv^{2}}=\frac{600}{v^{3}}+2
\end{gather}
\]
substituting the speed
\[
\begin{gather}
\frac{d^{2}C_{T}}{dv^{2}}=\frac{600}{(\sqrt[{3\;}]{150})^{3}}+2\\
\frac{d^{2}C_{T}}{dv^{2}}=\frac{600}{150}+2\\
\frac{d^{2}C_{T}}{dv^{2}}=6>0
\end{gather}
\]
as the second derivative is greater than zero, the speed found represents a point of minimum of the function.
b) The amount of coal consumed is obtained by substituting the result of the previous item in the expression
(III) for total consumption
\[
\begin{gather}
C_{T}=\frac{300}{\sqrt[{3\;}]{150\;}}+(\sqrt[{3\;}]{150\;})^{2}\\
C_{T}=\frac{300}{5.3}+(5.3)^{2}\\
C_{T}=56.6+28.1
\end{gather}
\]
\[ \bbox[#FFCCCC,10px]
{C_{T}=84.7\;\text{t}}
\]