A system has three masses connected by bars with negligible masses which are located at the points
indicated in the figure.
a) Calculate the position of the Center of Mass of this system;
b) Calculate the Moment of Inertia about the Center of Mass of the system.
The masses and positions of the bodies are: mA = 5 kg,
(xA, yA) = (8, 0), mB = 7 kg,
(xB, yB) = (–4, 6) and mC = 2 kg,
(xC, yC) = (1, –2).
Problem data:
- Mass of body A: mA = 5 kg;
- Body position A: (xA, yA) = (8, 0);
- Mass of body B: mB = 7 kg;
- Body position B: (xB, yB) = (–4, 6);
- Mass of body C: mC = 2 kg;
- Body position C: (xC, yC) = (1, –2).
Solution
a) The
Center of Mass is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{{\mathbf{r}}_{CM}=\frac{\displaystyle \sum_{i=1}^{n}m_{i}{\mathbf{r}}_{i}}{\displaystyle \sum_{i=1}^{n}m_{i}}}
\end{gather}
\]
The position vectors of the bodies
A,
B and
C are given by (Figure 1)
\[
\begin{gather}
{\mathbf{r}}_{A}=8\;\mathbf{i}+0\;\mathbf{j}\\
{\mathbf{r}}_{A}=8\;\mathbf{i}
\end{gather}
\]
\[
\begin{gather}
{\mathbf{r}}_{B}=-4\;\mathbf{i}+6\;\mathbf{j}
\end{gather}
\]
\[
\begin{gather}
{\mathbf{r}}_{C}=1\;\mathbf{i}-2\;\mathbf{j}\\
{\mathbf{r}}_{C}=\mathbf{i}-2\;\mathbf{j}
\end{gather}
\]
The positin vector of the
Center of Massa will be
\[
\begin{gather}
{\mathbf{r}}_{CM}=\frac{\displaystyle \sum_{i=1}^{n}m_{i}x_{i}\;\mathbf{i}+\displaystyle \sum_{i=1}^{n}m_{i}y_{i}\;\mathbf{j}}{\displaystyle \sum_{i=1}^{n}m_{i}}\\[5pt]
{\mathbf{r}}_{CM}=\frac{(8\times 5+(-4)\times 7+1\times 2)\;\mathbf{i}+(0\times 5+6\times 7+(-2)\times 2)\;\mathbf{j}}{5+7+2}\\[5pt]
{\mathbf{r}}_{CM}=\frac{(40-28+2)\;\mathbf{i}+(0+42-4)\;\mathbf{j}}{14}\\[5pt]
{\mathbf{r}}_{CM}=\frac{14\;\mathbf{i}+38\;\mathbf{j}}{14}
\end{gather}
\]
The positin vector of the
Center of Massa (Figure 2)
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{{\mathbf{r}}_{CM}=\mathbf{i}+2.7\;\mathbf{j}}
\end{gather}
\]
b) The distance
r from each body to the
Center of Mass will be given by the formula for the
distance between two points (Figure 2)
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\left|\mathbf{r}\right|=r=\sqrt{\left(x-x_{CM}\right)^{2}+\left(y-y_{CM}\right)^{2}\;}}
\end{gather}
\]
The distance
rA from body
A to the
Center of Mass will be (Figure 2)
\[
\begin{gather}
r_{A}=\sqrt{\left(x_{A}-x_{CM}\right)^{2}+\left(y_{A}-y_{CM}\right)^{2}\;}\\[5pt]
r_{A}=\sqrt{\left(8-1\right)^{2}+\left(0-2.7\right)^{2}\;}\\[5pt]
r_{A}=\sqrt{\left(7\right)^{2}+\left(-2.7\right)^{2}\;}\\[5pt]
r_{A}=\sqrt{49+7.3\;}\\[5pt]
r_{A}=\sqrt{56.3\;}\\[5pt]
r_{A}\approx 7.5
\end{gather}
\]
The distance
rB from body
B to the
Center of Mass will be (Figure 2)
\[
\begin{gather}
r_{B}=\sqrt{\left(x_{B}-x_{CM}\right)^{2}+\left(y_{B}-y_{CM}\right)^{2}\;}\\[5pt]
r_{B}=\sqrt{\left(-4-1\right)^{2}+\left(6-2.7\right)^{2}\;}\\[5pt]
r_{B}=\sqrt{\left(-5\right)^{2}+\left(3.3\right)^{2}\;}\\[5pt]
r_{B}=\sqrt{25+10.9\;}\\[5pt]
r_{B}=\sqrt{35.9\;}\\[5pt]
r_{B}\approx 6
\end{gather}
\]
The distance
rC from body
C to the
Center of Mass will be (Figure 2)
\[
\begin{gather}
r_{C}=\sqrt{\left(x_{C}-x_{CM}\right)^{2}+\left(y_{C}-y_{CM}\right)^{2}\;}\\[5pt]
r_{C}=\sqrt{\left(1-1\right)^{2}+\left(-2-2.7\right)^{2}\;}\\[5pt]
r_{C}=\sqrt{\left(0\right)^{2}+\left(-4.7\right)^{2}\;}\\[5pt]
r_{C}=\sqrt{22.1\;}\\[5pt]
r_{C}\approx 4.7
\end{gather}
\]
The
Moment of Inertia about the axis passing through the
Center of Mass is given by
\[
\begin{gather}
\bbox[#99CCFF,10px]
{I_{CM}=\sum_{i=1}^{n}m_{i}r_{i}^{2}}
\end{gather}
\]
substituting the distances
rA,
rB and
rC obtained
above (Figure 3)
\[
\begin{gather}
I=5\times (7.5)^{2}+7\times (6)^{2}+2\times (4.7)^{2}\\[5pt]
I=5\times 56.3+7\times 36+2\times 22.1\\[5pt]
I=281.5+252+44.2
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{I=577.7 \;\text{kg.m}^{2}}
\end{gather}
\]