Solved Problem on Moment of Inertia
advertisement   



Derive the Perpendicular Axis Theorem.


Problem diagram:

In Figure 1, dm is a mass element of the body, and r is the distance from the mass element to a perpendicular axis to the body (not necessarily passing through the Center of Mass).
Figure 1

Solution

In Figure 1, the z-axis is perpendicular to the plane containing the body, and the x and y axes are in the same plane as the body.
The moment of inertia relative to the z-axis is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {I_{z}=\int r^{2}\;dm} \tag{I} \end{gather} \]
Writing the moment of inertia for the two axes n the same plane as the body
\[ \begin{gather} I_{x}=\int x^{2}\;dm \tag{II-a} \end{gather} \]
\[ \begin{gather} I_{y}=\int y^{2}\;dm \tag{II-b} \end{gather} \]
Applying the Pythagorean Theorem (Figure 1)
\[ \begin{gather} r^{2}=x^{2}+y^{2} \tag{III} \end{gather} \]
substituting the expression (II) into expression (I)
\[ \begin{gather} I=\int \left(x^{2}+y^{2}\right)\;dm \tag{IV} \end{gather} \]
the integral of the sum of functions is the sum of the integrals
\[ \begin{gather} I=\int x^{2}\;dm+\int y^{2}\;dm \tag{V} \end{gather} \]
substituting the expressions (II-a) and (II-B) into expression (V)
\[ \bbox[#FFCCCC,10px] {I=I_{x}+I_{y}} \tag{Q.E.D.} \]

Observação: Q.E.D é a abreviação da expressão em latim Quod Erat Demonstrandum que significa Como Queríamos Demonstrar.
advertisement