A body with a mass of 2 kg and an initial velocity of 10 m/s in the positive direction is under the
action of a force that varies with position, given by
\[
\begin{gather}
F_x=-8x \qquad\qquad\text{units (SI)}
\end{gather}
\]
What will be the distance traveled by this body until its velocity becomes zero?
Problem data:
- Mass of the body: m = 2 kg;
- Initial velocity of the body: v0 = 10.
Problem diagram:
We choose a reference frame with the
x-axis pointed to the right and the
y-axis upward
(Figure 1).
The given force is negative, it is a resistive force that acts in the opposite direction of motion. The force
reduces the body's velocity until its final velocity is zero.
The
Initial Conditions are
\[
\begin{align}
& x(0)=0\\[10pt]
& v_{0}=\frac{dx(0)}{dt}=10\;\mathrm{m/s}
\end{align}
\]
Solution:
Applying
Newton's Second Law in the
x-direction, the force given in the problem is the only
force in this direction.
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\mathbf F=m\frac{d^2\mathbf x}{dt^2}}
\end{gather}
\]
\[
\begin{gather}
F_x=m\frac{d^2x}{dt^2}\\[5pt]
-8x=2\frac{d^2x}{dt^{2}}\\[5pt]
\frac{d^2x}{dt^2}+4x=0
\end{gather}
\]
Solution of
\( \displaystyle \frac{d^2x}{dt^2}+4x=0 \)
The solution to this type of equation is found by making the substitutions
\[
\begin{align}
& x=\operatorname{e}^{\lambda t}\\[10pt]
& \frac{dx}{dt}=\lambda \operatorname{e}^{\lambda t}\\[10pt]
& \frac{d^2x\theta}{dt^2}=\lambda^2\operatorname{e}^{\lambda t}
\end{align}
\]
substituting these values in the differential equation
\[
\begin{gather}
\lambda^2\operatorname{e}^{\lambda t}+4\operatorname{e}^{\lambda t}=0\\[5pt]
\operatorname{e}^{\lambda t}\left(\lambda ^2+4\right)0\\[5pt]
\lambda^2+4=\frac{0}{\operatorname{e}^{\lambda t}}\\[5pt]
\lambda^2+4=0
\end{gather}
\]
this is the
Characteristic Equation, which has the following solution
\[
\begin{gather}
\lambda_{1,2}=\pm\sqrt{-4\;}\\[5pt]
\lambda_{1,2}=\pm2\mathrm{i}
\end{gather}
\]
The solution of the differential equation will be
\[
\begin{gather}
x=C_1\operatorname{e}^{\lambda_1 t}+C_2\operatorname{e}^{\lambda_2 t}\\[5pt]
x=C_1\operatorname{e}^{2\mathrm{i}t}+C_{2}\operatorname{e}^{-2\mathrm{i}t}
\end{gather}
\]
where
C1 and
C2 are integration constants, using
Euler's Formula
\( \operatorname{e}^{\mathrm{i}\theta}=\cos\theta+\mathrm{i}\sin\theta \)
sin
\[
\begin{gather}
x=C_1\left(\cos2t+\mathrm{i}\sin 2t\right)+C_{2}\left(\cos2t-\mathrm{i}\sin 2t\right)\\[5pt]
x=C_1\cos2t+\mathrm{i}C_1\sin 2t+C_2\cos2t-\mathrm{i}C_2\sin 2t\\[5pt]
x=\left(C_1+C_{2}\right)\cos2t+\mathrm{i}\left(C_1-C_{2}\right)\sin 2t
\end{gather}
\]
defining two new constants,
α and
β, in terms of
C1 and
C2
\[
\begin{gather}
\alpha\equiv C_1+C_2\\[5pt]
\mathrm{e}\\[5pt]
\beta\equiv\mathrm{i}(C_1-C_2)
\end{gather}
\]
\[
\begin{gather}
x=\alpha\cos 2t+\beta\sin 2t \tag{I}
\end{gather}
\]
By differentiating equation (I) with respect to time, the function
x(
t) is the sum of two
functions, and the derivative of the sum is given by the sum of the derivatives
\[
\begin{gather}
(f+g)'=f'+g'
\end{gather}
\]
the sine and cosine functions are composite functions, using the
Chain Rule
\[
\begin{gather}
\frac{df[w(t)]}{dt}=\frac{df}{dw}\frac{dw}{dt}
\end{gather}
\]
with
\( f=\alpha\cos w \),
\( g=\beta\sin w \)
and
\( w=2t \)
\[
\begin{gather}
\frac{dx}{dt}=\frac{df}{dt}+\frac{dg}{dt} \tag{II}\\[5pt]
\frac{dx}{dt}=\frac{df}{dw}\frac{dw}{dt}+\frac{dg}{dw}\frac{dw}{dt}\\[5pt]
\frac{dx}{dt}=\frac{d\left(\alpha\cos w\right)}{dw}\frac{d\left(2t\right)}{dt}+\frac{d\left(\beta\sin w\right)}{dw}\frac{d\left(2t\right)}{dt}\\[5pt]
\frac{dx}{dt}=\left(-\alpha\sin w\right)(2)+\left(\beta\cos w\right)(2)\\[5pt]
\frac{dx}{dt}=-2ialpha\sin 2t+2ibeta\cos2t\\[5pt]
\frac{dx}{dt}=2\left(-\alpha\sin 2t+\beta\cos2t\right) \tag{III}
\end{gather}
\]
Substituting the
Initial Conditions into equations (I) and (III)
\[
\begin{gather}
x(0)=0=\alpha\cos 2\times0+\beta\sin 2\times 0\\[5pt]
\alpha=0 \tag{IV}
\end{gather}
\]
\[
\begin{gather}
\frac{dx(0)}{dt}=10=2\left(-0\times\sin 2\times 0+\beta\cos 2\times0\right)\\[5pt]
10=2\beta\\[5pt]
\beta=5 \tag{V}
\end{gather}
\]
substituting the constants (IV) and (V) into equation (I)
\[
\begin{gather}
x=0\cos 2t+5\sin 2t
\end{gather}
\]
The equation of motion is given by
\[
\begin{gather}
x(t)=5\sin 2t \tag{VI}
\end{gather}
\]
To find the time interval for which the velocity of the body is equal to zero, we differentiate equation (VI)
Derivative of
\( \displaystyle x(t)=5\sin 2t \)
The function
x(
t) is a composite function, using the
Chain Rule given in (II), and
making
\( f=5\sin w \)
and
\( w=2t \)
\[
\begin{gather}
\frac{dx}{dt}=\frac{df}{dw}\frac{dw}{dt}\\[5pt]v(t)=\frac{d\left(5\sin w\right)}{dw}\frac{d\left(2t\right)}{dt}\\[5pt]
v(t)=\left(5\cos w\right)(2)\\[5pt]
v(t)=2\times 5\cos 2t\\[5pt]
v(t)=10\cos 2t
\end{gather}
\]
The velocity equation is given by
\[
\begin{gather}
v(t)=10\cos 2t
\end{gather}
\]
setting
v(
t) =
0
\[
\begin{gather}
0=10\cos 2t\\[5pt]
\cos 2t=0\\[5pt]
2t=\arccos0\\[5pt]
t=\frac{1}{2}\;\arccos 0
\end{gather}
\]
Values for which the arc cosine is zero (arccos 0)
\[
\begin{gather}
\frac{\pi}{2},\frac{3\pi}{2},\frac{5\pi}{2},...,\frac{(2n+1)\pi}{2},...\qquad\qquad n=0,1,2,3,...
\end{gather}
\]
Using the first value for which the arc cosine is zero
\( \left(\frac{\pi}{2}\right) \),
the time interval for the velocity to become zero will be
\[
\begin{gather}
t=\frac{1}{2}\times{\frac{\pi}{2}}\\[5pt]
t=\frac{\pi}{4}\;\mathrm s
\end{gather}
\]
substituting this value into equation (VI), the distance traveled by the body until it stops will be
\[
\begin{gather}
x\left(\frac{\pi}{4}\right)=5\sin 2\times{\frac{\pi}{4}}\\[5pt]
x\left(\frac{\pi}{4}\right)=5\sin \frac{\pi }{2}
\end{gather}
\]
From Trigonometry
\( \displaystyle \sin \frac{\pi}{2}=1 \)
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{x=5\;\mathrm m}
\end{gather}
\]