A body with a mass of 2 kg and an initial velocity of 10 m/s in the positive direction is under the
action of a force that varies with position, given by
\[
\begin{gather}
F_x=-8x \qquad\qquad\text{units (SI)}
\end{gather}
\]
What will be the distance traveled by this body until its velocity becomes zero?
Problem data:
- Mass of the body: m = 2 kg;
- Initial velocity of the body: v0 = 10.
Problem diagram:
We choose a reference frame with the
x-axis pointed to the right and the
y-axis upward
(Figure 1).
The given force is negative, it is a resistive force that acts in the opposite direction of motion. The force
reduces the body's velocity until its final velocity is zero.
Solution:
Applying
Newton's Second Law in the
x-direction, the given force in the problem is the only
force in this direction.
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\mathbf F=m\frac{d\mathbf v}{dt}}
\end{gather}
\]
\[
\begin{gather}
F_x=m\frac{dv_x}{dt}\\[5pt]
-8x=2\frac{dv_x}{dt}
\end{gather}
\]
multiplying and dividing the right side of the equation by
dx
\[
\begin{gather}
-4x=\frac{dv_x}{dt}\frac{dx}{dx}
\end{gather}
\]
reversing the order of the integration terms in the denominator
\[
\begin{gather}
-4x=\frac{dv_x}{dx}\frac{dx}{dt}
\end{gather}
\]
applying the definition of velocity
\[
\begin{gather}
\bbox[#99CCFF,10px]
{v=\frac{dx}{dt}}
\end{gather}
\]
integrating in
dx on both sides of the equality
\[
\begin{gather}
\int -4x\;dx=\int v_x\frac{dv_x}{dx}\;dx\\[5pt]
\int-4x\;dx=\int v_x\;dv_x
\end{gather}
\]
the constant factor (−4) comes out of the integral on the left side
\[
\begin{gather}
-4\int x\;dx=\int v_x\;dv_x
\end{gather}
\]
Integral of
\( \displaystyle \int x\;dx \)
\[
\begin{gather}
\int x\;dx=\frac{x^{1+1}}{1+1}+C_1=\frac{x^2}{2}+C_1
\end{gather}
\]
Integral of
\( \displaystyle \int v_x\;dv_x \)
\[
\begin{gather}
\int v_x\;dv_x=\frac{v_x^{1+1}}{1+1}+C_2=\frac{v_x^2}{2}+C_2
\end{gather}
\]
where
C1 and
C2 are constants of integration.
\[
\begin{gather}
-4\left(\frac{x^2}{2}+C_1\right)=\frac{v_x^2}{2}+C_2\\[5pt]
-{\frac{4x^2}{2}}-4C_1=\frac{v_x^2}{2}+C_2\\[5pt]
-{\frac{4x^2}{2}}-4C_1-C_2=\frac{v_x^2}{2}
\end{gather}
\]
defining the constants
C1 and
C2 as a new constant
C
\[
\begin{gather}
C\equiv -4C_1-C_2
\end{gather}
\]
The equation for velocity as a function of position will be in the form
\[
\begin{gather}
\frac{v_x^2}{2}=-{\frac{4x^2}{2}}+C
\end{gather}
\]
The constant
C is determined using the initial condition given in the problem, at
x = 0, and
vx = 10 m/s
\[
\begin{gather}
\frac{10^2}{2}=-{\frac{4\times 0^2}{2}}+C\\[5pt]
C=\frac{100}{2}\\[5pt]
C=50
\end{gather}
\]
The equation for velocity will be
\[
\begin{gather}
\frac{v_x^2}{2}=-{\frac{4x^2}{2}}+50
\end{gather}
\]
multiplying the equation by 2 on both sides of the equality
\[
\begin{gather}
\qquad\quad\quad \frac{v_x^2}{2}=-{\frac{4x^2}{2}}+50 \quad\quad \mathrm{(\times 2)} \\[5pt]
\frac{v_x^2}{\cancel 2}\times \cancel 2=-{\frac{4x^2}{\cancel 2}}\times \cancel 2+50\times 2 \\[5pt]
v_x^2=-4x^2+100
\end{gather}
\]
When the velocity is zero,
vx = 0, the position will be
\[
\begin{gather}
0^2=-4x^2+100\\[5pt]
4x^2=100\\[5pt]
x=\sqrt{\frac{50}{2}\;}\\[5pt]
x=\sqrt{25\;}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{x=5\;\mathrm m}
\end{gather}
\]