A body with a mass of 2 kg and an initial velocity of 10 m/s in the positive direction is under the
action of a force that varies with position, given by
\[
\begin{gather}
F_x=-8x \qquad\qquad\text{units (SI)}
\end{gather}
\]
What will be the distance traveled by this body until its velocity becomes zero?
Problem data:
- Mass of the body: m = 2 kg;
- Initial velocity of the body: v0 = 10.
Problem diagram:
We choose a reference frame with the
x-axis pointed to the right and the
y-axis upward
(Figure 1).
The given force is negative, it is a resistive force that acts in the opposite direction of motion. The force
reduces the body's velocity until its final velocity is zero.
Solution:
Applying
Newton's Second Law in the
x-direction, the given force in the problem is the only
force in this direction.
\[
\begin{gather}
\bbox[#99CCFF,10px]
{\mathbf F=m\frac{d\mathbf v}{dt}}
\end{gather}
\]
\[
\begin{gather}
F_x=m\frac{dv_x}{dt}\\[5pt]
-8x=2\frac{dv_x}{dt}
\end{gather}
\]
multiplying and dividing the right side of the equation by
dx
\[
\begin{gather}
-4x=\frac{dv_x}{dt}\frac{dx}{dx}
\end{gather}
\]
reversing the order of the integration terms in the denominator
\[
\begin{gather}
-4x=\frac{dv_x}{dx}\frac{dx}{dt}
\end{gather}
\]
applying the definition of velocity
\[
\begin{gather}
\bbox[#99CCFF,10px]
{v=\frac{dx}{dt}}
\end{gather}
\]
integrating in
dx on both sides of the equality
\[
\begin{gather}
\int -4x\;dx=\int v_x\frac{dv_x}{dx}\;dx\\[5pt]
\int-4x\;dx=\int v_x\;dv_x
\end{gather}
\]
the constant factor (−4) comes out of the integral on the left side. The limits of integration are from
0, the initial position, and
x at any instant in
dx, and from 10 m/s, the initial velocity, to
0, the final velocity in
dvx.
\[
\begin{gather}
-4\int_0^x x'\;dx'=\int_{10}^0 v'_x\;dv'_x
\end{gather}
\]
Integral of
\( \displaystyle \int_0^x x'\;dx' \)
\[
\begin{gather}
\int_0^x x'\;dx'=\left.\frac{x^{1+1}}{1+1}\right|_0^x =\frac{x^2}{2}-\frac{0^2}{2}=\frac{x^2}{2}
\end{gather}
\]
Integral of
\( \displaystyle \int_{10}^0v_x\;dv_x \)
\[
\begin{gather}
\int_{10}^0 v_x\;dv_x=\left.\frac{v_x^{1+1}}{1+1}\right|_{10}^0=\frac{0^2}{2}-\frac{10^2}{2}=\frac{100}{2}=50
\end{gather}
\]
\[
\begin{gather}
-\cancelto{2}{4}\times\frac{x^2}{\cancel 2}=-50\\[5pt]
x^2=\frac{-50}{-2}\\[5pt]
x=\sqrt{25\;}
\end{gather}
\]
\[
\begin{gather}
\bbox[#FFCCCC,10px]
{x=5\;\mathrm m}
\end{gather}
\]