- Solution 2 of the problem:
The equation of velocity as a function of position,
v(
x), is given by
\[
\begin{gather}
\bbox[5px,border:5px solid #99CCFF]
{v^2(x)=-4x^2+100} \tag{I}
\end{gather}
\]
- Solution 3 of the problem:
The equations of motion and velocity are given as functions of time
\[
\begin{gather}
x(t)=5\sin 2t \tag{II}
\end{gather}
\]
\[
\begin{gather}
v(t)=10\cos 2t \tag{III}
\end{gather}
\]
solving the equation (II) for time
t
\[
\begin{gather}
t=\frac{1}{2}\arcsin \frac{x}{5}
\end{gather}
\]
substituting this value into equation (III), we obtain the equation of velocity as a function of position
v(
x)
\[
\begin{gather}
v=10\cos 2t\\[5pt]
v=10\cos\left(\cancel 2\times\frac{1}{\cancel 2}\arcsin \frac{x}{5}\right)
\end{gather}
\]
\[
\begin{gather}
\bbox[5px,border:5px solid #99CCFF]
{v(x)=10\cos\left(\arcsin \frac{x}{5}\right)} \tag{IV}
\end{gather}
\]
Let’s show that equation (IV) is equal to equation (I)..
In equation (IV), defining
θ as
\[
\begin{gather}
\theta=\arcsin \frac{x}{5}\\[5pt]
\sin \theta=\frac{x}{5}\\[5pt]
\sin \theta=\frac{\frac{x}{5}}{1}
\end{gather}
\]
θ is the angle of a right triangle with a hypotenuse equal to 1 and legs equal to
\( \left(\frac{x}{5}\right) \)
and
b (Figure 1).
Applying the
Pythagorean Theorem, we find the value of leg
b
\[
\begin{gather}
h^2=a^2+b^2\\[5pt]
1^2=\left(\frac{x}{5}\right)^2+b^2\\[5pt]
b=\sqrt{1-\left(\frac{x}{5}\right)^2\;}
\end{gather}
\]
The cosine of angle
θ is given by (Figure 2)
\[
\begin{gather}
\cos\theta=\frac{b}{1}=\frac{\sqrt{1-\left(\frac{x}{5}\right)^2\;}}{1}\\[5pt]
\cos\left(\arcsin \frac{x}{5}\right)=\sqrt{1-\frac{x^2}{25}\;} \tag{V}
\end{gather}
\]
Substituting the value of the cosine from (V) into equation (IV)
\[
\begin{gather}
v=10\sqrt{1-\frac{x^2}{25}\;}\\[5pt]
v^2=\left(10\sqrt{1-\frac{x^2}{25}\;}\right)^2\\[5pt]
v^2=100\left(1-\frac{x^2}{25}\right)\\[5pt]
v^2=100\left(\frac{25-x^2}{25}\right)\\[5pt]
v^2=4(25-x^2)\\[5pt]
\qquad\qquad v^2=100-4x^2\qquad (:2)\\[5pt]
\frac{v^2}{2}=\frac{100}{2}-\frac{4x^2}{2}\\[5pt]
\frac{v^2}{2}=\frac{-{4x^2}}{2}+50
\end{gather}
\]
The trigonometric equation (IV) is equal to the algebraic equation (I), and they represent the same
physical system.