Solved Problem on RLC Circuits
advertisement   



The current flowing in a circuit is given by
\[ \begin{gather} i=2\sin 4t \end{gather} \]
Determine:
a) The average current;
b) The rms current;


Solution

a) The average value of a function is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {\langle f(t)\rangle =\frac{1}{T}\int_{0}^{T}f(t)\;dt} \end{gather} \]
where f(t) = i(t)
\[ \begin{gather} \langle i\rangle =\frac{1}{T}\int_{0}^{T}2\sin 4t\;dt \end{gather} \]
The period of oscillation is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {T=\frac{2\pi}{\omega}} \end{gather} \]
the function given in the problem is of type   \( i=i_{o}\sin \omega t \),   we have ω = 4, and the period will be
\[ \begin{gather} T=\frac{2\pi}{4}\\[5pt] T=\frac{\pi}{2} \end{gather} \]
\[ \begin{gather} \langle i\rangle =\frac{1}{\frac{\pi}{2}}\int_{0}^{{\frac{\pi}{2}}}2\sin 4t\;dt\\[5pt] \langle i\rangle =\frac{2}{\pi}\times 2\int_{0}^{{\frac{\pi}{2}}}\sin 4t\;dt\\[5pt] \langle i\rangle =\frac{4}{\pi}\int_{0}^{{\frac{\pi}{2}}}\sin 4t\;dt \end{gather} \]
Integral of    \( \displaystyle \int_{0}^{{\frac{\pi}{2}}}\sin 4t\;dt \)

changing the variable
\[ \begin{array}{l} u=4t\\[5pt] \dfrac{du}{dt}=4\Rightarrow dt=\dfrac{du}{4} \end{array} \]
changing the limits of integration

for t = 0
we have u = 0

for   \( t=\dfrac{\pi}{2} \)
we have   \( u=4\times\dfrac{\pi}{2}=2\pi \)
\[ \begin{split} \int_{0}^{{\frac{\pi}{2}}}\sin 4t\;dt &=\int_{0}^{{2\pi}}\sin u\frac{du}{4}=\left.-{\frac{1}{4}}\;\cos u\;\right|_{\;0}^{\;2\pi}=\\[5pt] &=-\frac{1}{4}\;\left(\cos2\pi -\cos 0\right)=-{\frac{1}{4}}\;(1-1)=0 \end{split} \]
\[ \begin{gather} \langle i\rangle =\frac{4}{\pi}\times 0 \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {\langle i\rangle =0} \end{gather} \]

The rms value of a quantity that oscillates with to sine or cosine is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {f_{rms}=\left[\frac{1}{T}\int_{0}^{T}f(t)^{2}\;dt\right]^{1/2}} \end{gather} \]
substituting the square of the expression given in the problem
\[ \begin{gather} i_{rms}=\left[\frac{1}{T}\int_{0}^{T}2^{2}\sin ^{2}4t\;dt\right]^{1/2} \end{gather} \]
substituting the period of oscillation
\[ \begin{gather} i_{rms}=\left[\frac{1}{\frac{\pi}{2}}\int_{0}^{{\frac{\pi}{2}}}4\sin ^{2}4t\;dt\right]^{1/2}\\[5pt] i_{rms}=\left[\frac{2}{\pi}\times 4\int_{0}^{{\frac{\pi}{2}}}\sin ^{2}4t\;dt\right]^{1/2}\\[5pt] i_{rms}=\left[\frac{8}{\pi}\int_{0}^{{\frac{\pi}{2}}}\sin ^{2}4t\;dt\right]^{1/2} \end{gather} \]
Integral of    \( \displaystyle \int_{0}^{{\frac{\pi}{2}}}\sin ^{2}4t\;dt \)
substituting   \( \sin ^{2}x=\dfrac{1}{2}-\dfrac{1}{2}\cos 2x \),   with x = 4t
\[ \begin{gather} \int_{0}^{{\frac{\pi}{2}}}\sin ^{2}4t\;dt=\int_{0}^{{\frac{\pi}{2}}}\left(\frac{1}{2}-\frac{1}{2}\cos2\times 4t\right)\;dt=\frac{1}{2}\left(\int_{0}^{{\frac{\pi}{2}}}dt-\int_{0}^{{\frac{\pi}{2}}}\cos 8t\;dt\right) \end{gather} \]
in the 2nd integral in parentheses, changing the variable
\[ \begin{array}{l} u=8t\\[5pt] \dfrac{du}{dt}=8\Rightarrow dt=\dfrac{du}{8} \end{array} \]
changing the limits of integration

for t = 0
we have u = 0

for   \( t=\frac{\pi}{2} \)
we have   \( u=8\times\frac{\pi}{2}=4\pi \)
\[ \begin{split} \int_{0}^{{\frac{\pi}{2}}}\sin ^{2}4t\;dt &=\frac{1}{2}\left(\left.u\;\right|_{\;0}^{\;\frac{\pi}{2}}-\int_{0}^{{4\pi}}\cos u\frac{du}{8}\right)=\\[5pt] &=\frac{1}{2}\left[\left.u\;\right|_{\;0}^{\;\frac{\pi}{2}}-\frac{1}{8}\left(\left.\sin u\;\right|_{\;0}^{\;4\pi}\right)\right]=\\[5pt] &=\frac{1}{2}\left[\frac{\pi}{2}-0-\frac{1}{8}\left(\sin 4\pi-\sin 0\right)\right]=\\[5pt] &=\frac{1}{2}\left[\frac{\pi}{2}-\frac{1}{8}\times 0\right]=\frac{\pi}{4} \end{split} \]
\[ \begin{gather} i_{rms}=\left[\frac{8}{\pi}\times\frac{\pi}{4}\right]^{1/2}\\[5pt] i_{rms}=\left[2\right]^{1/2} \end{gather} \]
\[ \begin{gather} \bbox[#FFCCCC,10px] {i_{rms}=\sqrt{2}=1,41\;\mathrm{A}} \end{gather} \]
advertisement