Solved Problem on RLC Circuits
advertisement   



A series RLC circuit contains a resistor with resistance R = 75 Ω, an inductor with i nductance L = 10 mH, and a capacitor with capacitance C = 0.20 μF. The initial charge stored in the capacitor is equal to q0 = 0.4 mC and the current is zero. Determine:
a) The equation of electric charge as a function of time;
b) What is the type of oscillations in this circuit;
c) The graph of charge q versus time t.


Problem data:
  • Capacitance:    C = 0.20 μF;
  • Resistance:    R = 75 W;
  • Inductance:    L = 10 mH;
  • Initial charge stored in the capacitor:    q0 = 0.4 mC;
  • Initial current:    I0 = 0.
Problem diagram:

From the initial instant, a current begins to circulate, and the charge on the capacitor decreases while the current in the circuit increases, in each element of the circuit we have a potential difference (Figure 1). With this, we write the Initial Conditions of the problem
\[ \begin{gather} q(0)=q_{0}\\[10pt] i_{0}=\frac{dq(0)}{dt}=0 \end{gather} \]
Figure 1

Solution

a) Applying Kirchhoff's Second Law (Figure 1)
\[ \begin{gather} \bbox[#99CCFF,10px] {\sum_{i=1}^{n}V_{i}=0} \tag{I} \end{gather} \]
Between points A and B, we have a potential difference in the inductor given by
\[ \begin{gather} \bbox[#99CCFF,10px] {V_{L}=L\frac{di}{dt}} \tag{II} \end{gather} \]
between points C and D, we have a potential difference in the capacitor given by
\[ \begin{gather} \bbox[#99CCFF,10px] {V_{C}=\frac{q}{C}} \tag{III} \end{gather} \]
between points A and C, we have a potential difference in the resistor given by
\[ \begin{gather} \bbox[#99CCFF,10px] {V_{R}=Ri} \tag{IV} \end{gather} \]
substituting expressions (II), (III), and (IV) into expression (I)
\[ \begin{gather} V_{L}+V_{R}+V_{C}=0\\[5pt] L\frac{di}{dt}+Ri+\frac{q}{C}=0 \end{gather} \]
the instantaneous current is given by
\[ \begin{gather} \bbox[#99CCFF,10px] {i=\frac{dq}{dt}} \end{gather} \]
\[ \begin{gather} L\frac{d}{dt}\left(\frac{dq}{dt}\right)+R\frac{dq}{dt}+\frac{q}{C}=0\\[5pt] L\frac{d^{2}q}{dt^{2}}+R\frac{dq}{dt}+\frac{q}{C}=0 \end{gather} \]
this is a Second-Order Homogeneous Ordinary Differential Equation. Dividing the equation by the inductance L
\[ \begin{gather} \frac{d^{2}q}{dt^{2}}+\frac{R}{L}\frac{dq}{dt}+\frac{1}{LC}q=0 \end{gather} \]
substituting the values given in the problem
\[ \begin{gather} \frac{d^{2}q}{dt^{2}}+\frac{75}{10\times10^{-3}}\frac{dq}{dt}+\frac{1}{10\times10^{-3}\times0.20\times10^{-6}}q=0\\[5pt] \frac{d^{2}q}{dt^{2}}+\frac{75}{10^{-2}}\frac{dq}{dt}+\frac{1}{2\times10^{-9}}q=0\\[5pt] \frac{d^{2}q}{dt^{2}}+7.5\times10^{3}\frac{dq}{dt}+5\times10^{8}q=0 \tag{V} \end{gather} \]

Solution of    \( \displaystyle \frac{d^{2}q}{dt^{2}}+7.5\times10^{3}\frac{dq}{dt}+5\times10^{8}q=0 \)

The solution to this type of equation is found substituting
\[ \begin{gather} q=\operatorname{e}^{\lambda t}\\[5pt] \frac{dq}{dt}=\lambda \operatorname{e}^{\;\lambda t}\\[5pt] \frac{d^{2}q}{dt^{2}}=\lambda ^{2}\operatorname{e}^{\lambda t} \end{gather} \]
substituting these values into the differential equation
\[ \begin{gather} \lambda^{2}\operatorname{e}^{\lambda t}+7.5\times10^{3}\lambda \operatorname{e}^{\lambda t}+5\times10^{8}\operatorname{e}^{\lambda t}=0\\[5pt] \operatorname{e}^{\lambda t}\left(\lambda ^{2}+7.5\times10^{3}\lambda +5\times10^{8}\right)=0\\[5pt] \lambda^{2}+7.5\times10^{3}\lambda +5\times10^{8}=\frac{0}{\operatorname{e}^{\lambda t}}\\[5pt] \lambda ^{2}+7.5\times10^{3}\lambda +5\times10^{8}=0 \end{gather} \]
this is the Characteristic Equation that has a solution
\[ \begin{gather} \Delta=b^{2}-4ac=\left(7.5\times10^{3}\right)^{2}-4.5\times10^{8}=5.63\times10^{7}-2.00\times10^{9}=-1.94\times10^{9} \end{gather} \]
for Δ<0 the roots are complex of the form a+bi, where   \( i=\sqrt{-1\;} \)
\[ \begin{gather} \lambda =\frac{-b+\sqrt{\Delta\;}}{2a}=\frac{-7.5\times10^{3}+\sqrt{-1.94\times10^{9}\;}}{2\times1}=-{\frac{-7.5\times10^{3}\pm4.4\times10^{4}i}{2}}\\[5pt] \lambda_{1}=-3.75\times10^{3}+2.20\times10^{4}i\qquad \text{e}\qquad \lambda_{2}=-3.75\times10^{3}-2.20\times10^{4}i \end{gather} \]
The solution to the differential equation will be
\[ \begin{gather} q=C_{1}\operatorname{e}^{\lambda_{1}t}+C_{2}\operatorname{e}^{\lambda_{2}t}\\[5pt] q=C_{1}\operatorname{e}^{\left(-3.75\times10^{3}+2.20\times10^{4}i\right)t}+C_{2}\operatorname{e}^{\left(-3.75\times10^{3}-2.20\times10^{4}i\right)t}\\[5pt] q=C_{1}\operatorname{e}^{\left(-3.75\times10^{3}t+2.20\times10^{4}it\right)}+C_{2}\operatorname{e}^{\left(-3.75\times10^{3}t+2.20\times10^{4}it\right)}\\[5pt] q=C_{1}\operatorname{e}^{-3.75\times10^{3}t}\operatorname{e}^{2.15\times10^{4}i\;t}+C_{2}\operatorname{e}^{-3.75\times10^{3}t}\operatorname{e}^{-2.15\times10^{4}it}\\[5pt] q=\operatorname{e}^{-3.75\times10^{3}t}\left(C_{1}\operatorname{e}^{2.20\times10^{4}it}+C_{2}\operatorname{e}^{-2.20\times10^{4}it}\right) \end{gather} \]
where C1 and C2 are constants of integration, using Euler's Formula   \( \operatorname{e}^{i\theta }=\cos \theta +i\sin \theta \)
\[ \begin{gather} q=\operatorname{e}^{-3.75\times10^{3}t}\left[C_{1}\left(\cos2.20\times10^{4}t+i\sin 2.20\times10^{4}t\right)+C_{2}\left(\cos2.20\times10^{4}t-i\sin 2.20\times10^{4}t\right)\right]\\[5pt] q=\operatorname{e}^{-3.75\times10^{3}t}\left(C_{1}\cos2.20\times10^{4}t+iC_{1}\sin 2.20\times10^{4}t+C_{2}\cos2.20\times10^{4}t-iC_{2}\sin 2.20\times10^{4}t\right)\\[5pt] q=\operatorname{e}^{-3.75\times10^{3}t}\left[\left(C_{1}+C_{2}\right)\cos2.20\times10^{4}t+i\left(C_{1}-C_{2}\right)\sin 2.20\times10^{4}t\right] \end{gather} \]
defining two new constants α and β in terms of C1 and C2
\[ \begin{gather} \alpha \equiv C_{1}+C_{2}\\[5pt] \text{e}\\[5pt] \beta \equiv i(C_{1}-C_{2}) \end{gather} \]
\[ \begin{gather} q=\operatorname{e}^{-3.75\times10^{3}t}\left(\alpha \cos 2.20\times10^{4}t+\beta\sin 2.20\times10^{4}t\right) \end{gather} \]
multiplying and dividing this expression by   \( \sqrt{\alpha^{2}+\beta^{2}\;} \)
\[ \begin{gather} q=\operatorname{e}^{-3.75\times10^{3}t}\left(\alpha \cos2.20\times10^{4}t+\beta\sin 2.20\times10^{4}t\right).\frac{\sqrt{\alpha^{2}+\beta^{2}\;}}{\sqrt{\alpha^{2}+\beta^{2}\;}}\\[5pt] q=\sqrt{\alpha^{2}+\beta^{2}\;}\operatorname{e}^{-3.75\times10^{3}t}\left(\frac{\alpha}{\sqrt{\alpha^{2}+\beta^{2}\;}}\cos 2.20\times10^{4}t+\frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}\;}}\sin 2.20\times10^{4}t\right) \end{gather} \]
settings
\[ \begin{gather} A\equiv \sqrt{\alpha^{2}+\beta^{2}\;}\\[5pt] \cos\varphi \equiv \frac{\alpha}{\sqrt{\alpha^{2}+\beta{2}\;}}\\[5pt] \sin \varphi \equiv \frac{\beta}{\sqrt{\alpha^{2}+\beta^{2}\;}} \end{gather} \]
\[ \begin{gather} q=A\operatorname{e}^{-3.75\times10^{3}t}\left(\cos \varphi \cos2.20\times10^{4}t+\sin \varphi\sin 2.20\times10^{4}t\right) \end{gather} \]
From the trigonometric identity   \( \cos(a+b)=\cos a\cos b+\sin a\sin b \).
\[ \begin{gather} q(t)=A\operatorname{e}^{-3.75\times10^{3}t}\cos \left(2.20\times10^{4}t-\varphi\right)\tag{VI} \end{gather} \]
where A and φ are constants determined by the Initial Conditions.
Differentiation of the expression (VI) with respect to time
\[ \begin{gather} q=\underbrace{A\operatorname{e}^{-3.75\times10^{3}t}}_{u}\underbrace{\cos(2.20\times10^{4}t-\varphi)}_{v} \end{gather} \]
using the Product Rule for the differentiation of functions
\[ \begin{gather} (uv)'=u'v+uv' \end{gather} \]
where   \( u=A\operatorname{e}^{-3.75\times10^{3}t} \)   and   \( v=\cos (2.20\times10^{4}t-\varphi) \),   the function v is a composite function, using the Chain Rule
\[ \begin{gather} \frac{dv[w(t)]}{dt}=\frac{dv}{dw}\frac{dw}{dt} \end{gather} \]
with   \( v=\cos w \)   and   \( w=2.20\times10^{4}t-\varphi \)
\[ \begin{gather} \frac{dx}{dt}=\frac{du}{dt}v+u\frac{dv}{dt}\\[5pt] \frac{dx}{dt}=\frac{du}{dt}v+u\frac{dv}{dw}\frac{dw}{dt}\\[5pt] \frac{dx}{dt}=\frac{d\left(A\operatorname{e}^{-3.75\times10^{3}t}\right)}{dt}\left[\cos(2.20\times10^{4}t-\varphi)\right]+\left(A\operatorname{e}^{-3.75\times10^{3}t}\right)\frac{d\left(\cos w\right)}{dw}\frac{d\left(2.20\times10^{4}t-\varphi\right)}{dt}\\[5pt] \frac{dx}{dt}=-3.75\times10^{3}\operatorname{e}^{-3.75\times10^{3}t}\cos(2.20\times10^{4}t-\varphi)+\left(A\operatorname{e}^{-3.75\times10^{3}t}\right)\left(-\sin w\right)\left(2.20\times10^{4}\right)\\[5pt] \frac{dx}{dt}=-3.75\times10^{3}A\operatorname{e}^{-3.75\times10^{3}t}\cos(2.20\times10^{4}t-\varphi)-2.20\times10^{4}A\operatorname{e}^{-3.75\times10^{3}t}\sin (2.20\times10^{4}t-\varphi)\\[5pt] \frac{dx}{dt}=-A\operatorname{e}^{-3.75\times10^{3}t}\left[3.75\times10^{3}\cos(2.20\times10^{4}t-\varphi)+2.20\times10^{4}\sin (2.20\times10^{4}t-\varphi)\right] \tag{VII} \end{gather} \]
Substituting the Initial Conditions into expressions (VI) and (VII)
\[ \begin{gather} q(0)=4\times10^{-4}=A\operatorname{e}^{-\gamma\times 0}\cos(\omega\times 0-\varphi)\\ 4\times10^{-4}=A\cos (-\varphi) \end{gather} \]
since cosine is an even function we have   \( \cos (-\varphi)=\cos \varphi \)
\[ \begin{gather} 4\times10^{-4}=A\cos \varphi \\[5pt] A=\frac{4\times10^{-4}}{\cos\varphi} \tag{VIII} \end{gather} \]
\[ \begin{gather} \frac{dq(0)}{dt}=0=-A\operatorname{e}^{-3.75\times10^{3}.0}\left[3.75\times10^{3}\cos(2.20\times10^{4}\times0-\varphi)+2.20\times10^{4}\sin (2.20\times10^{4}\times0-\varphi)\right]\\[5pt] 0=-A.1\left[3.75\times10^{3}\cos (0-\varphi)+2.20\times10^{4}\sin (0-\varphi)\right]\\[5pt] 0=-A\left[3.75\times10^{3}\cos (-\varphi)+2.20\times10^{4}\sin (-\varphi)\right] \end{gather} \]
as cosine is an even function and sine is an odd function   \( \sin (-\varphi)=-\sin \varphi \)
\[ \begin{gather} 0=-3.75\times10^{3}A\cos \varphi +2.20\times10^{4}A\sin \varphi \tag{IX} \end{gather} \]
and substituting expression (VIII) into expression (IX)
\[ \begin{gather} 0=-{\frac{4\times10^{-4}}{\cos \varphi}}3.75\times10^{3}\cos\varphi +\frac{4\times10^{-4}}{\cos \varphi}2.20\times10^{4}\sin \varphi\\[5pt] -3.75\times10^{3}.4\times10^{-4}+2.20\times10^{4}.4\times10^{-4}\tan \varphi=0\\[5pt] 2.20\times10^{4}.4\times10^{-4}\tan \varphi=3.75\times10^{3}4\times10^{-4}\\[5pt] 2.20\times10^{4}\tan \varphi=3.75\times10^{3}\\[5pt] \tan \varphi=\frac{3.75\times10^{3}}{2.20\times10^{4}}\\[5pt] \varphi=\arctan\left(0.17\right)\\[5pt] \varphi \simeq 0.17 \end{gather} \]
Substituting the value of φ into the expression (VIII)
\[ \begin{gather} A=\frac{4\times10^{-4}}{\cos0.17}\\[5pt] A=\frac{4\times10^{-4}}{0,99}\\[5pt] A\simeq 4\times10^{-4} \end{gather} \]
substituting the constants A and φ into expression (VI)
\[ \begin{gather} q=4\times10^{-4}\operatorname{e}^{-3.75\times10^{3}t}\cos\left(2.20\times10^{4}t-0.17\right) \end{gather} \]

Equation of charge
\[ \begin{gather} \bbox[#FFCCCC,10px] {q(t)=4\times10^{-4}\operatorname{e}^{-3.75\times10^{3}t}\cos\left(2.20\times10^{4}t-0.17\right)} \end{gather} \]


b) As Δ<0 this is an underdamped RLC circuit oscillator.

c) Plotting the graph of
\[ \begin{gather} q(t)=4\times10^{-4}\operatorname{e}^{-3.75\times10^{3}t}\cos\left(2.20\times10^{4}t-0.17\right) \end{gather} \]
The function q(t) is the product of two functions,   \( f(t)=4\times10^{-4}\operatorname{e}^{-3.75\times10^{3}t} \)  and   \( g(t)=\cos (2.20\times10^{4}t-0.17) \).   To find the roots we set q(t) = 0, as q(t) = f(t)g(t) we have f(t) = 0 or g(t) = 0.
  • For g(t) = 0
\[ \begin{gather} g(t)=\cos (2.20\times10^{4}t-0.17)=0 \end{gather} \]
the function cosine is equal to zero when its argument \( 2.20\times10^{4}t-0.17 \) is equal to \( \frac{\pi}{2} \), \( \frac{3\pi}{2} \), \( \frac{5\pi}{2} \),..., \( \frac{(2n+1)\pi}{2} \), with n = 0, 1, 2, 3,...,
\[ \begin{gather} 2.20\times10^{4}t-0.17=\frac{(2n+1)\pi}{2}\\[5pt] \frac{220\times10^{4}}{100}t-\frac{17}{100}=\frac{(2n+1)\pi}{2}\\[5pt] \frac{220\times10^{4}}{100}t-\frac{17}{100}=\frac{(2n+1)\pi}{2}\times\frac{50}{50}\\[5pt] \frac{220\times10^{4}}{100}t-\frac{17}{100}=50\frac{(2n+1)\pi}{100}\\[5pt] 220\times10^{4}t-17=50(2n+1)\pi \\[5pt] t=\frac{50}{220\times10^{4}}(2n+1)\pi+\frac{17}{220\times10^{4}}\\[5pt] t=\frac{1}{220\times10^{4}}\left[50(2n+1)\pi+17\right] \end{gather} \]
for these values of t, we have the roots of the cosine function, the first four values for n = 0, 1, 2, and 3 will be t = 0.79×10−4; 2.22×10−4; 3.65×10−4 and 5.08×10−4 (Graph 1).

Graph 1
  • For f(t) = 0
\[ \begin{gather} f(t)=4\times10^{-4}\operatorname{e}^{-3.75\times10^{3}t}=0\\[5pt] \operatorname{e}^{-3.75\times10^{3}t}=\frac{0}{4\times10^{-4}}\\[5pt] \operatorname{e}^{-3.75\times10^{3}t}=0 \end{gather} \]
as there is no t that satisfies this equality, the function f(t) does not intersect the t-axis. For any real value of t the function will always be positive, f(t) > 0.
Differentiation of the expression f(t)
\[ \begin{gather} \frac{df}{dt}=4\times10^{-4}(-3.75\times10^{3})\operatorname{e}^{-3.75\times10^{3}t}\\[5pt] \frac{df}{dt}=-0,15\operatorname{e}^{-3.75\times10^{3}t} \end{gather} \]
for any real value of t, the derivative will always be negative   \( \left(\frac{df(t)}{dt}<0\right) \)   and the function always decreases. Setting   \( \frac{df(t)}{dt}=0 \)   we find the maximum and minimum points of the function.
\[ \begin{gather} \frac{df}{dt}=-0,15\operatorname{e}^{-3.75\times10^{3}t}=0\\[5pt] \operatorname{e}^{-3.75\times10^{3}t}=\frac{0}{-0,15}\\[5pt] \operatorname{e}^{-3.75\times10^{3}t}=0 \end{gather} \]
as there is no t that satisfies this equality, there are no maximum or minimum points of the function.
The second derivative of the expression f(t)
\[ \begin{gather} \frac{d^{2}f}{dt^{2}}=-0,15(-3.75\times10^{3})\operatorname{e}^{-3.75\times10^{3}t}\\[5pt] \frac{d^{2}f}{dt^{2}}=5.63\times10^{2}\operatorname{e}^{-3.75\times10^{3}t} \end{gather} \]
For any value of real t, the second derivative will always be positive   \( \left(\frac{d^{2}f(t)}{dt^{2}}>0\right) \)   and the function is concave upward. Setting   \( \frac{d^{2}f(t)}{dt^{2}}=0 \)   we find inflection points in the function.
\[ \begin{gather} \frac{d^{2}f}{dt^{2}}=5.63\times10^{2}\operatorname{e}^{-3.75\times10^{3}t}=0\\[5pt] \operatorname{e}^{-3.75\times10^{3}t}=\frac{0}{5.63\times10^{2}}\\[5pt] \operatorname{e}^{-3.75\times10^{3}t}=0 \end{gather} \]
as there is no t that satisfies this equality, there are no inflection points in the function.
For t = 0 the value f(0) will be
\[ \begin{gather} f(0)=4\times10^{-4}\operatorname{e}^{-3.75\times10^{3}.0}\\[5pt] f(0)=4\times10^{-4}\operatorname{e}^{-0}\\[5pt] f(0)=4\times10^{-4}\times1\\f(0)=4\times10^{-4} \end{gather} \]
As the variable t represents time, we do not calculate negative values, t < 0, for t tending to infinity
\[ \begin{gather} \lim_{t\rightarrow \infty }f(t)=\lim_{t\rightarrow \infty}4\times10^{-4}\operatorname{e}^{-3.75\times10^{3}t}=\lim_{t\rightarrow \infty}{\frac{4\times10^{-4}}{\operatorname{e}^{3.75\times10^{3}t}}}=\lim_{t\rightarrow \infty }{\frac{4\times10^{-4}}{\operatorname{e}^{\infty }}}=0 \end{gather} \]
From the above analysis, we plotted the graph of f versus t (Graph 2).

Graph 2

As q(t) = f(t)g(t), the combination of graphs produces a curve that oscillates like the cosine function damped by the exponential (Graph 3).

Graph 3
advertisement